
447

Introduction

The sequential nature of files severely limits the number of interest-
ing things that you can do easily with them. The algorithms we have
examined so far have all been sequential algorithms: algorithms that can
be performed by examining each data item once, in sequence. An entirely
different class of algorithms can be performed when you can access the
data items multiple times and in an arbitrary order.

This chapter examines a new object called an array that provides this
more flexible kind of access. The concept of arrays is not complex, but
it can take a while for a novice to learn all of the different ways that an
array can be used. The chapter begins with a general discussion of arrays
and then moves into a discussion of common array manipulations as well
as advanced array techniques. The chapter also includes a discussion of
special rules known as reference semantics that apply only to objects like
arrays and strings.

7.1 Array Basics
■■ Constructing and Traversing

an Array
■■ Accessing an Array
■■ Initializing Arrays
■■ A Complete Array Program
■■ Random Access
■■ Arrays and Methods
■■ The For-Each Loop
■■ The Arrays Class

7.2 Array-Traversal
Algorithms

■■ Printing an Array
■■ Searching and Replacing
■■ Testing for Equality
■■ Reversing an Array
■■ String Traversal Algorithms
■■ Functional Approach

7.3 Reference Semantics
■■ Multiple Objects

7.4 Advanced Array
Techniques

■■ Shifting Values in an Array
■■ Arrays of Objects
■■ Command-Line Arguments
■■ Nested Loop Algorithms

7.5 Multidimensional Arrays
■■ Rectangular Two-Dimensional

Arrays
■■ Jagged Arrays

7.6 Arrays of Pixels

7.7 Case Study: Benford’s Law
■■ Tallying Values
■■ Completing the Program

Chapter 7
Arrays

M07_REGE1944_05_SE_C07.indd 447 15/12/18 5:20 AM

448	 Chapter 7  Arrays

7.1  Array Basics

An array is a flexible structure for storing a sequence of values that are all of the
same type.

Array

An indexed structure that holds multiple values of the same type.

Index

An integer indicating the position of a particular value in a data structure.

Zero-Based Indexing

A numbering scheme used throughout Java in which a sequence of values is
indexed starting with 0 (element 0, element 1, element 2, and so on).

The values stored in an array are called elements. The individual elements are
accessed using an integer index.

As an analogy, consider post office boxes. The boxes are indexed with numbers,
so you can refer to an individual box by using a description like “P.O. Box 884.” You
already have experience using an index to indicate positions within a String; recall
the methods charAt and substring. Like String indexes, array indexes start with 0.
This is a convention known as zero-based indexing.

It might seem more natural to start indexes with 1 instead of 0, but Java uses the
same indexing scheme that is used in C and C++.

Constructing and Traversing an Array

Suppose you want to store some different temperature readings. You could keep them
in a series of variables:

double temperature1;

double temperature2;

double temperature3;

This isn’t a bad solution if you have just 3 temperatures, but suppose you need to
store 3000 temperatures. Then you would want a more flexible way to store the val-
ues. You can instead store the temperatures in an array.

When you use an array, you first need to declare a variable for it, so you have to
know what type to use. The type will depend on the type of elements you want to have
in your array. To indicate that you are creating an array, follow the type name with a

M07_REGE1944_05_SE_C07.indd 448 15/12/18 5:20 AM

7.1  Array Basics� 449

set of square brackets: []. If you are storing temperature values, you want a sequence
of values of type double, so you use the type double[]. Thus, you can declare a vari-
able for storing your array as follows:

double[] temperature;

Arrays are objects, which means that they must be constructed. Simply declaring a
variable isn’t enough to bring the object into existence. In this case you want an array
of three double values, which you can construct as follows:

double[] temperature = new double[3];

This is a slightly different syntax than you’ve used previously to create a new ob-
ject. It is a special syntax for arrays only. Notice that on the left-hand side you don’t
put anything inside the square brackets, because you’re describing a type. The variable
temperature can refer to any array of double values, no matter how many elements
it has. On the right-hand side, however, you have to mention a specific number of ele-
ments because you are asking Java to construct an actual array object and it needs to
know how many elements to include.

The general syntax for declaring and constructing an array is as follows:

<element type>[] <name> = new <element type>[<length>];

You can use any type as the element type, although the left and right sides of this
statement have to match. For example, any of the following lines of code would be
legal ways to construct an array:

int[] numbers = new int[10]; // an array of 10 ints

char[] letters = new char[20]; // an array of 20 chars

boolean[] flags = new boolean[5]; // an array of 5 booleans

String[] names = new String[100]; // an array of 100 Strings

Color[] colors = new Color[50]; // an array of 50 Colors

Some special rules apply when you construct an array of objects such as an array of
Strings or an array of Colors, but we’ll discuss those later in the chapter.

When it executes the line of code to construct the array of temperatures, Java will con-
struct an array of three double values, and the variable temperature will refer to the array:

temperature 30.0

[0]

30.0

[1]

30.0

[2]

As you can see, the variable temperature is not itself the array. Instead, it stores
a reference to the array. The array indexes are indicated in square brackets. To refer
to an individual element of the array, you combine the name of the variable that refers

M07_REGE1944_05_SE_C07.indd 449 15/12/18 5:20 AM

450	 Chapter 7  Arrays

Table 7.1  Zero-Equivalent
Auto-Initialization Values

Type Value

int 0

double 0.0

char '\0'

boolean false

objects null

to the array (temperature) with a specific index ([0], [1], or [2]). So, there is an
element known as temperature[0], an element known as temperature[1], and an
element known as temperature[2].

In the temperature array diagram, each of the array elements has the value 0.0.
This is a guaranteed outcome when an array is constructed. Each element is initialized
to a default value, a process known as auto-initialization.

Auto-Initialization

The initialization of variables to a default value, such as on an array’s elements
when it is constructed.

When Java performs auto-initialization, it always initializes to the zero-equivalent
for the type. Table 7.1 indicates the zero-equivalent values for various types. The spe-
cial value null will be explained later in this chapter.

Notice that the zero-equivalent for type double is 0.0, which is why the array
elements were initialized to that value. Using the indexes, you can store the specific
temperature values that are relevant to this problem:

temperature[0] = 74.3;

temperature[1] = 68.4;

temperature[2] = 70.3;

This code modifies the array to have the following values:

temperature 374.3

[0]

368.4

[1]

370.3

[2]

Obviously an array isn’t particularly helpful when you have just three values to
store, but you can request a much larger array. For example, you could request an
array of 100 temperatures by writing the following line of code:

double[] temperature = new double[100];

M07_REGE1944_05_SE_C07.indd 450 15/12/18 5:20 AM

7.1  Array Basics� 451

This is almost the same line of code you executed before. The variable is still de-
clared to be of type double[], but in constructing the array, you requested 100 ele-
ments instead of 3, which constructs a much larger array:

temperature 30.0

[0]

30.0

[1]

30.0

[2]

30.0

[3]

30.0

[4]

3...

[...]

30.0

[99]

Notice that the highest index is 99 rather than 100 because of zero-based indexing.
You are not restricted to using simple literal values inside the brackets. You can

use any integer expression. This flexibility allows you to combine arrays with loops,
which greatly simplifies the code you write. For example, suppose you want to read a
series of temperatures from a Scanner. You could read each value individually:

temperature[0] = input.nextDouble();

temperature[1] = input.nextDouble();

temperature[2] = input.nextDouble();

...

temperature[99] = input.nextDouble();

But since the only thing that changes from one statement to the next is the index,
you can capture this pattern in a for loop with a control variable that takes on the
values 0 to 99:

for (int i = 0; i < 100; i++) {

 temperature[i] = input.nextDouble();

}

This is a very concise way to initialize all the elements of the array. The preceding
code works when the array has a length of 100, but you can change this to accommo-
date an array of a different length. Java provides a useful mechanism for making this
code more general. Each array keeps track of its own length. You’re using the variable
temperature to refer to your array, which means you can ask for temperature.length
to find out the length of the array. By using temperature.length in the for loop test
instead of the specific value 100, you make your code more general:

for (int i = 0; i < temperature.length; i++) {

 temperature[i] = input.nextDouble();

}

Notice that the array convention is different from the String convention. When
you are working with a String variable s, you ask for the length of the String by
referring to s.length(). When you are working with an array variable, you don’t in-
clude the parentheses after the word “length.” This is another one of those unfortunate
inconsistencies that Java programmers just have to memorize.

M07_REGE1944_05_SE_C07.indd 451 15/12/18 5:20 AM

452	 Chapter 7  Arrays

The previous code provides a pattern that you will see often with array-processing
code: a for loop that starts at 0 and that continues while the loop variable is less than
the length of the array, doing something with element [i] in the body of the loop. The
program goes through each array element sequentially, which we refer to as traversing
the array.

Array Traversal

Processing each array element sequentially from the first to the last.

This pattern is so useful that it is worth including it in a more general form:

for (int i = 0; i < <array>.length; i++) {

 <do something with array[i]>;

}

We will see this traversal pattern repeatedly as we explore common array algorithms.

Accessing an Array

As we discussed in the last section, we refer to array elements by combining the name
of the variable that refers to the array with an integer index inside square brackets:

<array variable>[<integer expression>]

Notice in this syntax description that the index can be an arbitrary integer expres-
sion. To explore this feature, let’s examine how we would access particular values in
an array of integers. Suppose that we construct an array of length 5 and fill it up with
the first five odd integers:

int[] list = new int[5];

for (int i = 0; i < list.length; i++) {

 list[i] = 2 * i + 1;

}

The first line of code declares a variable list of type int[] that refers to an array
of length 5. The array elements are auto-initialized to 0:

list 30

[0]

30

[1]

30

[2]

30

[3]

0

[4]

Then the code uses the standard traversing loop to fill in the array with successive
odd numbers:

M07_REGE1944_05_SE_C07.indd 452 15/12/18 5:20 AM

7.1  Array Basics� 453

Suppose that we want to report the first, middle, and last values in the list. From an
examination of the preceding diagram, we can see that these values occur at indexes 0,
2, and 4, which means we could write the following code:

// works only for an array of length 5

System.out.println("first = " + list[0]);

System.out.println("middle = " + list[2]);

System.out.println("last = " + list[4]);

This technique works when the array is of length 5, but suppose that we use an
array of a different length? If the array has a length of 10, for example, this code will
report the wrong values. We need to modify it to incorporate list.length, just as we
modified the standard traversing loop.

The first element of the array will always be at index 0, so the first line of code
doesn’t need to change. You might at first think that we could fix the third line of code
by replacing the 4 with list.length:

// doesn't work

System.out.println("last = " + list[list.length]);

However, this code doesn’t work. The culprit is zero-based indexing. In our ex-
ample, the last value is stored at index 4, not index 5, when list.length is 5. More
generally, the last value will be at index list.length – 1. We can use this expres-
sion directly in our println statement:

// this one works

System.out.println("last = " + list[list.length – 1]);

Notice that what appears inside the square brackets is an integer expression (the
result of subtracting 1 from list.length).

A simple approach to finding the middle value is to divide the length of the list in
half:

// is this right?

System.out.println("middle = " + list[list.length / 2]);

When list.length is 5, this expression evaluates to 2, which prints the correct
value. But what about when list.length is 10? In that case the expression evaluates
to 5, and we would print list[5]. But when the list has an even length, there are ac-
tually two values in the middle. For a list of length 10, the two values are at list[4]
and list[5]. In general, the preceding expression always returns the second of the
two values in the middle when the list is of even length.

list 31

[0]

33

[1]

35

[2]

37

[3]

39

[4]

M07_REGE1944_05_SE_C07.indd 453 15/12/18 5:20 AM

454	 Chapter 7  Arrays

If we wanted the code to return the first of the two values in the middle instead, we
could subtract 1 from the length before dividing it in half. Here is a complete set of
println statements that follows this approach:

System.out.println("first = " + list[0]);

System.out.println("middle = " + list[(list.length – 1) / 2]);

System.out.println("last = " + list[list.length – 1]);

As you learn how to use arrays, you will find yourself wondering what types of op-
erations you can perform on an array element that you are accessing. For example, for
the array of integers called list, what exactly can you do with list[i]? The answer
is that you can do anything with list[i] that you would normally do with any vari-
able of type int. For example, if you have a variable called x of type int, any of the
following expressions are valid:

x = 3;

x++;

x *= 2;

x––;

That means that the same expressions are valid for list[i] if list is an array of
integers:

list[i] = 3;

list[i]++;

list[i] *= 2;

list[i]––;

From Java’s point of view, because list is declared to be of type int[], an
array element like list[i] is of type int and can be manipulated as such. For
example, to increment every value in the array, you could use the standard tra-
versing loop:

for (int i = 0; i < list.length; i++) {

 list[i]++;

}

This code would increment each value in the array, turning the array of odd num-
bers into an array of even numbers.

It is possible to refer to an illegal index of an array, in which case Java throws an
exception. For example, for an array of length 5, the legal indexes are from 0 to 4. Any
number less than 0 or greater than 4 is outside the bounds of the array:

M07_REGE1944_05_SE_C07.indd 454 15/12/18 5:20 AM

7.1  Array Basics� 455

When you are working with this sample array, if you attempt to refer to list[-1]
or list[5], you are attempting to access an array element that does not exist.
If your code makes such an illegal reference, Java will halt your program with an
ArrayIndexOutOfBoundsException.

Initializing Arrays

Java has a special syntax for initializing an array when you know exactly what you
want to put into it. For example, you could write the following code to initialize an
array of integers to keep track of the number of days that are in each month (“Thirty
days hath September . . .”) and an array of Strings to keep track of the abbreviations
for the days of the week:

int[] daysIn = new int[12];

daysIn[0] = 31;

daysIn[1] = 28;

daysIn[2] = 31;

daysIn[3] = 30;

daysIn[4] = 31;

daysIn[5] = 30;

daysIn[6] = 31;

daysIn[7] = 31;

daysIn[8] = 30;

daysIn[9] = 31;

daysIn[10] = 30;

daysIn[11] = 31;

String[] dayNames = new String[7];

dayNames[0] = "Mon";

dayNames[1] = "Tue";

dayNames[2] = "Wed";

dayNames[3] = "Thu";

dayNames[4] = "Fri";

dayNames[5] = "Sat";

dayNames[6] = "Sun";

This code works, but it’s a rather tedious way to declare these arrays. Java provides
a shorthand:

int[] daysIn = {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};

String[] dayNames = {"Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun"};

31

[0]

33

[1]

35

[2]

37

[3]

39

[4]

legal indexes 0– 4index less than 0
out of bounds

index 5 or more
out of bounds

M07_REGE1944_05_SE_C07.indd 455 15/12/18 5:20 AM

456	 Chapter 7  Arrays

The general syntax for array initialization is as follows:

<element type>[] <name> = {<value>, <value>, ..., <value>};

You use the curly braces to enclose a series of values that will be stored in the array.
The order of the values is important. The first value will go into index 0, the second
value will go into index 1, and so on. Java counts how many values you include and
constructs an array that is just the right size. It then stores the various values into the
appropriate spots in the array.

This is one of only two examples we have seen in which Java will construct an ob-
ject without the new keyword. The other place we saw this was with String literals, in
which Java constructs String objects without your having to call new. Both of these
techniques are conveniences for programmers. These tasks are so common that the
designers of the language wanted to make it easy to do them.

Declaring and manipulating arrays in JShell is a good way to try out the syntax and
learn about how arrays behave. The concise array initialization syntax makes it easier
to create and examine an array containing a given set of elements.

jshell> int[] list = {1, 3, 5, 7, 9};

list ==> int[5] { 1, 3, 5, 7, 9 }

jshell> list[0]

$2 ==> 1

jshell> list[4]

$3 ==> 9

jshell> list.length

$4 ==> 5

jshell> list[list.length - 1]

$5 ==> 9

jshell> list[list.length / 2]

$6 ==> 5

jshell> list[5]

| java.lang.ArrayIndexOutOfBoundsException thrown: 5

| at (#7:1)

A Complete Array Program

Let’s look at a program in which an array allows you to solve a problem that you
couldn’t solve before. If you tune in to any local news broadcast at night, you’ll hear
them report the high temperature for that day. It is usually reported as an integer, as in,
“It got up to 78 today.”

M07_REGE1944_05_SE_C07.indd 456 15/12/18 5:20 AM

7.1  Array Basics� 457

Suppose you want to examine a series of daily high temperatures, compute the
average high temperature, and count how many days were above that average tem-
perature. You’ve been using Scanners to solve problems like this, and you can almost
solve the problem that way. If you just wanted to know the average, you could use a
Scanner and write a cumulative sum loop to find it:

 1 // Reads a series of high temperatures and reports the average.

 2

 3 import java.util.*;

 4

 5 public class Temperature1 {

 6 public static void main(String[] args) {

 7 Scanner console = new Scanner(System.in);

 8 System.out.print("How many days' temperatures? ");

 9 int numDays = console.nextInt();

10 int sum = 0;

11 for (int i = 1; i <= numDays; i++) {

12 System.out.print("Day " + i + "'s high temp: ");

13 int next = console.nextInt();

14 sum += next;

15 }

16 double average = (double) sum / numDays;

17 System.out.println();

18 System.out.println("Average = " + average);

19 }

20 }

Did You Know?

Buffer Overruns

One of the earliest and still most common sources of computer security problems
is a buffer overrun (also known as a buffer overflow). A buffer overrun is similar
to an array index out of bounds exception. It occurs when a program writes data
beyond the bounds of the buffer that is set aside for that data.

For example, you might have space allocated for the String “James T Kirk”,
which is 12 characters long, counting the spaces:

3s 3 3T 33J 3a 3m 3e 3K 3i 3r 3k

12-character bu�er

Continued on next page

M07_REGE1944_05_SE_C07.indd 457 15/12/18 5:20 AM

458	 Chapter 7  Arrays

Continued from previous page

Suppose that you tell the computer to overwrite this buffer with the String
“Jean Luc Picard”. There are 15 letters in Picard’s name, so if you write all of
those characters into the buffer, you “overrun” it by writing three extra characters:

3 3L 3u 33J 3e 3a 3n 3 3P 3i 3c 3a 3r 3dc

12-character bu�er overrun

The last three letters of Picard’s name (“ard”) are being written to a part of
memory that is beyond the end of the buffer. This is a very dangerous situation,
because it will overwrite any data that is already there. An analogy would be a fel-
low student grabbing three sheets of paper from you and erasing anything you had
written on them. You are likely to have had useful information written on those
sheets of paper, so the overrun is likely to cause a problem.

When a buffer overrun happens accidentally, the program usually halts with
some kind of error condition. However, buffer overruns are particularly danger-
ous when they are done on purpose by a malicious program. If the attacker can
figure out just the right memory location to overwrite, the attacking software can
take over your computer and instruct it to do things you haven’t asked it to do.

Three of the most famous Internet worms were built on buffer overruns: the
1988 Morris worm, the 2001 Code Red worm, and the 2003 SQL Slammer worm.

Buffer overruns are often written as array code. You might wonder how such
a malicious program could be written if the computer checks the bounds when
you access an array. The answer is that older programming languages like C and
C++ do not check bounds when you access an array. By the time Java was de-
signed in the early 1990s, the danger of buffer overruns was clear and the design-
ers of the language decided to include array-bounds checking so that Java would
be more secure. Microsoft included similar bounds checking when it designed the
language C# in the late 1990s.

The preceding program does a pretty good job. Here is a sample execution:

How many days' temperatures? 5

Day 1's high temp: 78

Day 2's high temp: 81

Day 3's high temp: 75

Day 4's high temp: 79

Day 5's high temp: 71

Average = 76.8

M07_REGE1944_05_SE_C07.indd 458 15/12/18 5:20 AM

7.1  Array Basics� 459

But how do you count how many days were above average? You could try to
incorporate a comparison to the average temperature into the loop, but that won’t
work. The problem is that you can’t figure out the average until you’ve gone through
all of the data. That means you’ll need to make a second pass through the data to
figure out how many days were above average. You can’t do that with a Scanner,
because a Scanner has no “reset” option that allows you to see the data a second
time. You’d have to prompt the user to enter the temperature data a second time,
which would be silly.

Fortunately, you can solve the problem with an array. As you read numbers in and
compute the cumulative sum, you can fill up an array that stores the temperatures.
Then you can use the array to make the second pass through the data.

In the previous temperature example you used an array of double values, but here
you want an array of int values. So, instead of declaring a variable of type double[],
declare a variable of type int[]. You’re asking the user how many days of temperature
data to include, so you can construct the array right after you’ve read that information:

int numDays = console.nextInt();

int[] temps = new int[numDays];

Here is the old loop:

for (int i = 1; i <= numDays; i++) {

 System.out.print("Day " + i + "'s high temp: ");

 int next = console.nextInt();

 sum += next;

}

Because you’re using an array, you’ll want to change this to a loop that starts at 0
to match the array indexing. But just because you’re using zero-based indexing inside
the program doesn’t mean that you have to confuse the user by asking for “Day 0’s
high temp.” You can modify the println to prompt for day (i + 1). Furthermore,
you no longer need the variable next because you’ll be storing the values in the array
instead. So, the loop code becomes

for (int i = 0; i < numDays; i++) {

 System.out.print("Day " + (i + 1) + "'s high temp: ");

 temps[i] = console.nextInt();

 sum += temps[i];

}

Notice that you’re now testing whether the index is strictly less than numDays. After
this loop executes, you compute the average as we did before. Then you write a new
loop that counts how many days were above average using our standard traversing loop:

int above = 0;

for (int i = 0; i < temps.length; i++) {

M07_REGE1944_05_SE_C07.indd 459 15/12/18 5:20 AM

460	 Chapter 7  Arrays

 if (temps[i] > average) {

 above++;

 }

}

In this loop the test involves temps.length. You could instead have tested whether
the variable is less than numDays; either choice works in this program because they
should be equal to each other.

If you put these various code fragments together and include code to report the
number of days that had an above-average temperature, you get the following com-
plete program:

 1 // Reads a series of high temperatures and reports the

 2 // average and the number of days above average.

 3

 4 import java.util.*;

 5

 6 public class Temperature2 {

 7 public static void main(String[] args) {

 8 Scanner console = new Scanner(System.in);

 9 System.out.print("How many days’ temperatures? ");

10 int numDays = console.nextInt();

11 int[] temps = new int[numDays];

12

13 // record temperatures and find average

14 int sum = 0;

15 for (int i = 0; i < numDays; i++) {

16 System.out.print("Day " + (i + 1) + "'s high temp: ");

17 temps[i] = console.nextInt();

18 sum += temps[i];

19 }

20 double average = (double) sum / numDays;

21

22 // count days above average

23 int above = 0;

24 for (int i = 0; i < temps.length; i++) {

25    if (temps[i] > average) {

26 above++;

27 }

28 }

29

30 // report results

31 System.out.println();

M07_REGE1944_05_SE_C07.indd 460 15/12/18 5:20 AM

7.1  Array Basics� 461

32 System.out.println("Average = " + average);

33 System.out.println(above + " days above average");

34 }

35 }

Here is a sample execution of the program:

How many days' temperatures? 9

Day 1's high temp: 75

Day 2's high temp: 78

Day 3's high temp: 85

Day 4's high temp: 71

Day 5's high temp: 69

Day 6's high temp: 82

Day 7's high temp: 74

Day 8's high temp: 80

Day 9's high temp: 87

Average = 77.88888888888889

5 days above average

Random Access

Most of the algorithms we have seen so far have involved sequential access.

Sequential Access

Manipulating values in a sequential manner from first to last.

A Scanner object is often all you need for a sequential algorithm, because it allows
you to access data by moving forward from the first element to the last. But as we have
seen, there is no way to reset a Scanner back to the beginning. The sample program
we just studied uses an array to allow a second pass through the data, but even this is
fundamentally a sequential approach because it involves two forward passes through
the data.

An array is a powerful data structure that allows a more flexible kind of access
known as random access:

Random Access

Manipulating values in any order whatsoever to allow quick access to each value.

M07_REGE1944_05_SE_C07.indd 461 15/12/18 5:20 AM

462	 Chapter 7  Arrays

An array can provide random access because it is allocated as a contiguous block
of memory. The computer can quickly compute exactly where a particular value will
be stored, because it knows how much space each element takes up in memory and it
knows that all the elements are allocated right next to one another in the array.

When you work with arrays, you can jump around in the array without worrying
about how much time it will take. For example, suppose that you have constructed an
array of temperature readings that has 10,000 elements and you find yourself wanting
to print a particular subset of the readings with code like the following:

System.out.println("#1394 = " + temps[1394]);

System.out.println("#6793 = " + temps[6793]);

System.out.println("#72 = " + temps[72]);

This code will execute quickly even though you are asking for array elements that
are far apart from one another. Notice also that you don’t have to ask for them in order.
You can jump to element 1394, then jump ahead to element 6793, and then jump back
to element 72. You can access elements in an array in any order that you like, and you
will get fast access.

Later in the chapter we will explore several algorithms that would be difficult to
implement without fast random access.

Common Programming Error

Off-by-One Bug

When you converted the Temperature1 program to one that uses an array, you
modified the for loop to start with an index of 0 instead of 1. The original for
loop was written the following way:

for (int i = 1; i <= numDays; i++) {

 System.out.print("Day " + i + "'s high temp: ");

 int next = console.nextInt();

 sum += next;

}

Because you were storing the values into an array rather than reading them into a
variable called next, you replaced next with temps[i]:

// wrong loop bounds

for (int i = 1; i <= numDays; i++) {

 System.out.print("Day " + i + "'s high temp: ");

 temps[i] = console.nextInt();

 sum += temps[i];

}

Continued on next page

M07_REGE1944_05_SE_C07.indd 462 15/12/18 5:20 AM

7.1  Array Basics� 463

Because the array is indexed starting at 0, you changed the bounds of the for loop
to start at 0 and adjusted the print statement. Suppose those were the only changes
you made:

// still wrong loop bounds

for (int i = 0; i <= numDays; i++) {

 System.out.print("Day " + (i + 1) + "'s high temp: ");

 temps[i] = console.nextInt();

 sum += temps[i];

}

This loop generates an error when you run the program. The loop asks for an extra
day’s worth of data and then throws an exception. Here’s a sample execution:

How many days' temperatures? 5

Day 1's high temp: 82

Day 2's high temp: 80

Day 3's high temp: 79

Day 4's high temp: 71

Day 5's high temp: 75

Day 6's high temp: 83

Exception in thread "main"

 java.lang.ArrayIndexOutOfBoundsException: 5

 at Temperature2.main(Temperature2.java:18)

The problem is that if you’re going to start the for loop variable at 0, you need to
do a test to ensure that it is strictly less than the number of iterations you want. You
changed the 1 to a 0 but left the <= test. As a result, the loop is performing an extra iter-
ation and trying to make a reference to an array element temps[5] that doesn’t exist.

This is a classic off-by-one error. The fix is to change the loop bounds to use a
strictly less-than test:

// correct bounds

for (int i = 0; i < numDays; i++) {

 System.out.print("Day " + (i + 1) + "'s high temp: ");

 temps[i] = console.nextInt();

 sum += temps[i];

}

Continued from previous page

M07_REGE1944_05_SE_C07.indd 463 15/12/18 5:20 AM

464	 Chapter 7  Arrays

Arrays and Methods

You will find that when you pass an array as a parameter to a method, the method
has the ability to change the contents of the array. We’ll examine in detail later in the
chapter why this occurs, but for now, the important point is simply to understand that
methods can alter the contents of arrays that are passed to them as parameters.

Let’s explore a specific example to better understand how to use arrays as param-
eters and return values for a method. Earlier in the chapter, we saw the following code
for constructing an array of odd numbers and incrementing each array element:

int[] list = new int[5];

for (int i = 0; i < list.length; i++) {

 list[i] = 2 * i + 1;

}

for (int i = 0; i < list.length; i++) {

 list[i]++;

}

Let’s see what happens when we move the incrementing loop into a method. It will
need to take the array as a parameter. We’ll rename it data instead of list to make it
easier to distinguish it from the original array variable. Remember that the array is of
type int[], so we would write the method as follows:

public static void incrementAll(int[] data) {

 for (int i = 0; i < data.length; i++) {

 data[i]++;

 }

}

You might think this method will have no effect whatsoever, or that we have to
return the array to cause the change to be remembered. But when we use an array as a
parameter, this approach actually works. We can replace the incrementing loop in the
original code with a call on our method:

int[] list = new int[5];

for (int i = 0; i < list.length; i++) {

 list[i] = 2 * i + 1;

}

incrementAll(list);

This code produces the same result as the original.
The key lesson to draw from this is that when we pass an array as a parameter to a

method, that method has the ability to change the contents of the array. We don’t need
to return the array to allow this to happen.

VideoNote

M07_REGE1944_05_SE_C07.indd 464 15/12/18 5:20 AM

7.1  Array Basics� 465

To continue with this example, let’s define a method for the initializing code that
fills the array with odd numbers. We can accomplish this by moving the initializing
loop into a method that takes the array as a parameter:

public static void fillWithOdds(int[] data) {

 for (int i = 0; i < data.length; i++) {

 data[i] = 2 * i + 1;

 }

}

We would then change our main method to call this fillWithOdds method:

int[] list = new int[5];

fillWithOdds(list);

incrementAll(list);

Like the incrementAll method, this method would change the array even though
it does not return it. But this isn’t the best approach to use in this situation. It seems
odd that the fillWithOdds method requires you to construct an array and pass it as
a parameter. Why doesn’t fillWithOdds construct the array itself? That would sim-
plify the call to the method, particularly if we ended up calling it multiple times.

If fillWithOdds is going to construct the array, it will have to return a reference
to it. Otherwise, only the method will have a reference to the newly constructed array.
In its current form, the fillWithOdds method assumes that the array has already been
constructed, which is why we wrote the following two lines of code in main:

int[] list = new int[5];

fillWithOdds(list);

If the method is going to construct the array, it doesn’t have to be passed as a pa-
rameter, but it will have to be returned by the method. Thus, we can rewrite these two
lines of code from main as a single line:

int[] list = fillWithOdds();

Now, however, we have a misleading method name. The method isn’t just filling an
existing array, it is constructing one. Also notice that we can make the method more
flexible by telling it how large to make the array. So if we rename it and pass the size
as a parameter, then we’d call it this way:

int[] list = buildOddArray(5);

We can then rewrite the fillWithOdds method so that it constructs and returns the
array:

public static int[] buildOddArray(int size) {

 int[] data = new int[size];

M07_REGE1944_05_SE_C07.indd 465 15/12/18 5:20 AM

466	 Chapter 7  Arrays

 for (int i = 0; i < data.length; i++) {

 data[i] = 2 * i + 1;

 }

 return data;

}

Pay close attention to the header of the preceding method. It no longer has the
array as a parameter, and its return type is int[] rather than void. It also ends with a
return statement that returns a reference to the array that it constructs.

Putting this all together along with some code to print the contents of the array, we
end up with the following complete program:

 1 // Sample program with arrays passed as parameters

 2

 3 public class IncrementOdds {

 4 public static void main(String[] args) {

 5 int[] list = buildOddArray(5);

 6 incrementAll(list);

 7 for (int i = 0; i < list.length; i++) {

 8 System.out.print(list[i] + " ");

 9 }

10 System.out.println();

11 }

12

13 // returns array of given size composed of consecutive odds

14 public static int[] buildOddArray(int size) {

15 int[] data = new int[size];

16 for (int i = 0; i < data.length; i++) {

17 data[i] = 2 * i + 1;

18 }

19 return data;

20 }

21

22 // adds one to each array element

23 public static void incrementAll(int[] data) {

24 for (int i = 0; i < data.length; i++) {

25 data[i]++;

26 }

27 }

28 }

The program produces the following output:

2 4 6 8 10

M07_REGE1944_05_SE_C07.indd 466 15/12/18 5:20 AM

7.1  Array Basics� 467

The For-Each Loop

Java has a loop construct that simplifies certain array loops. It is known as the en-
hanced for loop, or the for-each loop. You can use it whenever you want to examine
each value in an array. For example, the program Temperature2 had an array variable
called temps and the following loop:

for (int i = 0; i < temps.length; i++) {

 if (temps[i] > average) {

 above++;

 }

}

We can rewrite this as a for-each loop:

for (int n : temps) {

 if (n > average) {

 above++;

 }

}

This loop is normally read as, “For each int n in temps. . . .” The basic syntax of
the for-each loop is

for (<type> <name> : <array>) {

 <statement>;

 <statement>;

 ...

 <statement>;

}

There is nothing special about the variable name, as long as you keep it consistent
within the body of the loop. For example, the previous loop could be written with the
variable x instead of the variable n:

for (int x : temps) {

 if (x > average) {

 above++;

 }

}

The for-each loop is most useful when you simply want to examine each value
in sequence. There are many situations in which a for-each loop is not appropriate.
For example, the following loop would double every value in an array called list:

for (int i = 0; i < list.length; i++) {

 list[i] *= 2;

}

M07_REGE1944_05_SE_C07.indd 467 15/12/18 5:20 AM

468	 Chapter 7  Arrays

Because the loop is changing the array, you can’t replace it with a for-each loop:

for (int n : list) {

 n *= 2; // changes only n, not the array

}

As the comment indicates, the preceding loop doubles the variable n without chang-
ing the array elements.

In some cases, the for-each loop isn’t the most convenient choice even when the
code involves examining each array element in sequence. Consider, for example, the
following loop that prints each array index along with the array value separated by a
tab character:

for (int i = 0; i < data.length; i++) {

 System.out.println(i + "\t" + data[i]);

}

A for-each loop could be used to replace the array access:

for (int n : data) {

 System.out.println(i + "\t" + n); // not quite legal

}

However, this loop would cause a problem. We want to print the value of i, but we
eliminated i when we converted the array access to a for-each loop. We would have to
add extra code to keep track of the value of i:

// legal but clumsy

int i = 0;

for (int n : data) {

 System.out.println(i + "\t" + n);

 i++;

}

In this case, the for-each loop doesn’t really simplify things, and the original ver-
sion is probably clearer.

The Arrays Class

Arrays have some important limitations that you should understand. Over the years
Java has attempted to remedy these limitations by providing various utility methods in
a class called Arrays. This class provides many methods that make it easier to work
with arrays. The Arrays class is part of the java.util package, so you would have to
include an import declaration in any program that uses it.

M07_REGE1944_05_SE_C07.indd 468 15/12/18 5:20 AM

7.1  Array Basics� 469

The first limitation you should be aware of is that you can’t change the size of an
array in the middle of program execution. Remember that arrays are allocated as a
contiguous block of memory, so it is not easy for the computer to expand the array. If
you find that you need a larger array, you should construct a new array and copy the
values from the old array to the new array. The method Arrays.copyOf provides ex-
actly this functionality. For example, if you have an array called data, you can create
a copy that is twice as large with the following line of code:

int[] newData = Arrays.copyOf(data, 2 * data.length);

If you want to copy only a portion of an array, there is a similar method called
Arrays.copyOfRange that accepts an array, a starting index, and an ending index as
parameters.

The second limitation is that you can’t print an array using a simple print or
println statement. You will get odd output when you do so. JShell understands how
to display arrays in a nice way, but in general arrays do not know how to print them-
selves in a useful format.

The Arrays class once again offers a solution: The method Arrays.toString
returns a conveniently formatted version of an array. Consider, for example, the fol-
lowing three lines of code:

int[] primes = {2, 3, 5, 7, 11, 13, 17, 19, 23};

System.out.println(primes);

System.out.println(Arrays.toString(primes));

It produces the following output:

[I@fee4648

[2, 3, 5, 7, 11, 13, 17, 19, 23]

Notice that the first line of output is not at all helpful. The second line, how-
ever, allows us to see the list of prime numbers in the array because we called
Arrays.toString to format the array before printing it.

The third limitation is that you can’t compare arrays for equality using a simple ==
test. We saw that this was true of Strings as well. If you want to know whether two
arrays contain the same set of values, you should call the Arrays.equals method:

int[] data1 = {1, 1, 2, 3, 5, 8, 13, 21};

int[] data2 = {1, 1, 2, 3, 5, 8, 13, 21};

if (Arrays.equals(data1, data2)) {

 System.out.println("They store the same data");

}

M07_REGE1944_05_SE_C07.indd 469 15/12/18 5:20 AM

470	 Chapter 7  Arrays

Table 7.2  Useful Methods of the Arrays Class

Method Description

copyOf(array, newSize) returns a copy of the array with the given size

copyOfRange(array,

 startIndex, endIndex)

returns a copy of the given subportion of the given array

from startIndex (inclusive) to endIndex (exclusive)

equals(array1, array2) returns true if the arrays contain the same elements

fill(array, value) sets every element of the array to be the given value

sort(array) rearranges the elements so that they appear in sorted

(nondecreasing) order

toString(array) returns a String representation of the array, as in [3, 5, 7]

This code prints the message that the arrays store the same data. It would not do so
if we used a direct comparison with ==.

The Arrays class provides other useful methods as well, including methods for
sorting the array and for filling it up with a specific value. Table 7.2 contains a list of
some of the most useful methods in the Arrays class.

7.2  Array-Traversal Algorithms

The previous section presented two standard patterns for manipulating an array. The
first is the traversing loop, which uses a variable of type int to index each array value:

for (int i = 0; i < <array>.length; i++) {

 <do something with array[i]>;

}

The second is the for-each loop:

for (<type> <name> : <array>) {

 <statement>;

 <statement>;

 ...

 <statement>;

}

In this section we will explore some common array algorithms that can be implemented
with these patterns. Of course, not all array operations can be implemented this way—the
section ends with an example that requires a modified version of the standard code.

We will implement each operation as a method. Java does not allow you to write
generic array code, so we have to pick a specific type. We’ll assume that you are oper-
ating on an array of int values. If you are writing a program to manipulate a different
kind of array, you’ll have to modify the code for the type you are using (e.g., changing
int[] to double[] if you are manipulating an array of double values).

VideoNote

M07_REGE1944_05_SE_C07.indd 470 15/12/18 5:20 AM

7.2  Array-Traversal Algorithms� 471

Printing an Array

Suppose you have an array of int values like the following:

list 317

[0]

3-3

[1]

342

[2]

38

[3]

312

[4]

32

[5]

3103

[6]

How would you go about printing the values in the array? For other types of data,
you can use a println statement:

System.out.println(list);

Unfortunately, as mentioned in the Arrays class section of this chapter, with an
array the println statement produces strange output like the following:

[I@6caf43

This is not helpful output, and it tells us nothing about the contents of the array.
We saw that Java provides a solution to this problem in the form of a method called
Arrays.toString that converts the array into a convenient text form. You can re-
write the println as follows to include a call on Arrays.toString:

System.out.println(Arrays.toString(list));

This line of code produces the following output:

[17, −3, 42, 8, 12, 2, 103]

This is a reasonable way to show the contents of the array, and in many situations it
will be sufficient. However, for situations in which you want something different, you
can write your own method.

Suppose that you want to write each number on a line by itself. In that case, you can
use a for-each loop that does a println for each value:

public static void print(int[] list) {

 for (int n : list) {

 System.out.println(n);

 }

}

You can then call this method with the variable list:

print(list);

M07_REGE1944_05_SE_C07.indd 471 15/12/18 5:20 AM

472	 Chapter 7  Arrays

This call produces the following output:

17

−3

42

8

12

2

103

In some cases, the for-each loop doesn’t get you quite what you want, though. For
example, consider how the Arrays.toString method must be written. It produces a
list of values that are separated by commas, which is a classic fencepost problem (e.g.,
seven values separated by six commas). To solve the fencepost problem, you’d want
to use an indexing loop instead of a for-each loop so that you can print the first value
before the loop:

System.out.print(list[0]);

for (int i = 1; i < list.length; i++) {

 System.out.print(", " + list[i]);

}

System.out.println();

Notice that i is initialized to 1 instead of 0 because list[0] is printed before the
loop. This code produces the following output for the preceding sample array:

17, −3, 42, 8, 12, 2, 103

Even this code is not correct, though, because it assumes that there is a list[0] to
print. It is possible for arrays to be empty, with a length of 0, in which case this code
will generate an ArrayIndexOutOfBoundsException. The version of the method
that follows produces output that matches the String produced by Arrays.toString.
The printing statements just before and just after the loop have been modified to in-
clude square brackets, and a special case has been included for empty arrays:

public static void print(int[] list) {

 if (list.length == 0) {

 System.out.println("[]");

 } else {

 System.out.print("[" + list[0]);

 for (int i = 1; i < list.length; i++) {

 System.out.print(", " + list[i]);

M07_REGE1944_05_SE_C07.indd 472 15/12/18 5:20 AM

7.2  Array-Traversal Algorithms� 473

 }

 System.out.println("]");

 }

}

Searching and Replacing

Often you’ll want to search for a specific value in an array. For example, you might
want to count how many times a particular value appears in an array. Suppose you
have an array of int values like the following:

list 38

[0]

37

[1]

319

[2]

382

[3]

38

[4]

37

[5]

38

[6]

Counting occurrences is the simplest search task, because you always examine each
value in the array and you don’t need to change the contents of the array. You can
accomplish this task with a for-each loop that keeps a count of the number of occur-
rences of the value for which you’re searching:

public static int count(int[] list, int target) {

 int count = 0;

 for (int n : list) {

 if (n == target) {

 count++;

 }

 }

 return count;

}

You can use this method in the following call to figure out how many 8s are in the
list:

int number = count(list, 8);

This call would set number to 3 for the sample array, because there are three occur-
rences of 8 in the list. If you instead made the call

int number = count(list, 2);

number would be set to 0, because there are no occurrences of 2 in the list.
Sometimes you want to find out where a value is in a list. You can accomplish this

task by writing a method that will return the index of the first occurrence of the value

M07_REGE1944_05_SE_C07.indd 473 15/12/18 5:20 AM

474	 Chapter 7  Arrays

in the list. Because you don’t know exactly where you’ll find the value, you might try
using a while loop, as in the following pseudocode:

int i = 0;

while (we haven´t found it yet) {

 i++;

}

However, there is a simpler approach. Because you’re writing a method that returns
a value, you can return the appropriate index as soon as you find a match. That means
you can use the standard traversal loop to solve this problem:

for (int i = 0; i < list.length; i++) {

 if (list[i] == target) {

 return i;

 }

}

Remember that a return statement terminates a method, so you’ll break out of this
loop as soon as the target value is found. But what if the value isn’t found? What if
you traverse the entire array and find no matches? In that case, the for loop will finish
executing without ever returning a value.

There are many things you can do if the value is not found. The convention used through-
out the Java class libraries is to return the value -1 to indicate that the value is not anywhere
in the list. So you can add an extra return statement after the loop that will be executed only
when the target value is not found. Putting all this together, you get the following method:

public static int indexOf(int[] list, int target) {

 for (int i = 0; i < list.length; i++) {

 if (list[i] == target) {

 return i;

 }

 }

 return –1;

}

You can use this method in the following call to find the first occurrence of the
value 7 in the list:

int position = indexOf(list, 7);

This call would set position to 1 for the sample array, because the first occurrence
of 7 is at index 1. There is another occurrence of 7 later in the array, at index 5, but this
code terminates as soon as it finds the first match.

If you instead made the call

int position = indexOf(list, 42);

M07_REGE1944_05_SE_C07.indd 474 15/12/18 5:20 AM

7.2  Array-Traversal Algorithms� 475

position would be set to –1 because there are no occurrences of 42 in the list.
As a final variation, consider the problem of replacing all the occurrences of a value

with some new value. This is similar to the counting task. You’ll want to traverse the
array looking for a particular value and replace the value with something new when
you find it. You can’t accomplish that task with a for-each loop, because changing the
loop variable has no effect on the array. Instead, use a standard traversing loop:

public static void replaceAll(int[] list, int target, int replacement) {

 for (int i = 0; i < list.length; i++) {

 if (list[i] == target) {

 list[i] = replacement;

 }

 }

}

Notice that even though the method is changing the contents of the array, you don’t
need to return it in order to have that change take place.

As we noted at the beginning of this section, these examples involve an array of
integers, and you would have to change the type if you were to manipulate an array
of a different type (for example, changing int[] to double[] if you had an array of
double values). But the change isn’t quite so simple if you have an array of objects,
such as Strings. In order to compare String values, you must make a call on the
equals method rather than using a simple == comparison. Here is a modified ver-
sion of the replaceAll method that would be appropriate for an array of Strings:

public static void replaceAll(String[] list, String target,

 String replacement) {

 for (int i = 0; i < list.length; i++) {

 if (list[i].equals(target)) {

 list[i] = replacement;

 }

 }

}

Testing for Equality

Because arrays are objects, testing them for equality is more complex than testing
primitive values like integers and doubles for equality. Two arrays are equivalent in
value if they have the same length and store the same sequence of values. The method
Arrays.equals performs this test:

if (Arrays.equals(list1, list2)) {

 System.out.println("The arrays are equal");

}

M07_REGE1944_05_SE_C07.indd 475 15/12/18 5:20 AM

476	 Chapter 7  Arrays

Like the Arrays.toString method, often the Arrays.equals method will be all
you need. But sometimes you’ll want slight variations, so it’s worth exploring how to
write the method yourself.

The method will take two arrays as parameters and will return a boolean result
indicating whether or not the two arrays are equal. So, the method will look like this:

public static boolean equals(int[] list1, int[] list2) {

 ...

}

When you sit down to write a method like this, you probably think in terms of de-
fining equality: “The two arrays are equal if their lengths are equal and they store the
same sequence of values.” But this isn’t the easiest approach. For example, you could
begin by testing that the lengths are equal, but what would you do next?

public static boolean equals(int[] list1, int[] list2) {

 if (list1.length == list2.length) {

 // what do we do?

 ...

 }

 ...

}

Methods like this one are generally easier to write if you think in terms of the op-
posite condition: What would make the two arrays unequal? Instead of testing for the
lengths being equal, start by testing whether the lengths are unequal. In that case, you
know exactly what to do. If the lengths are not equal, the method should return a value
of false, and you’ll know that the arrays are not equal to each other:

public static boolean equals(int[] list1, int[] list2) {

 if (list1.length != list2.length) {

 return false;

 }

 ...

}

If you get past the if statement, you know that the arrays are of equal length. Then
you’ll want to check whether they store the same sequence of values. Again, test for
inequality rather than equality, returning false if there’s a difference:

public static boolean equals(int[] list1, int[] list2) {

 if (list1.length != list2.length) {

 return false;

 }

 for (int i = 0; i < list1.length; i++) {

M07_REGE1944_05_SE_C07.indd 476 15/12/18 5:20 AM

7.2  Array-Traversal Algorithms� 477

if (list1[i] != list2[i]) {

return false;

}

}

 ...

}

If you get past the for loop, you’ll know that the two arrays are of equal length and
that they store exactly the same sequence of values. In that case, you’ll want to return
the value true to indicate that the arrays are equal. This addition completes the method:

public static boolean equals(int[] list1, int[] list2) {

 if (list1.length != list2.length) {

 return false;

 }

 for (int i = 0; i < list1.length; i++) {

 if (list1[i] != list2[i]) {

 return false;

 }

 }

 return true;

}

This is a common pattern for a method like equals: You test all of the ways that the two
objects might not be equal, returning false if you find any differences, and returning true
at the very end so that if all the tests are passed the two objects are declared to be equal.

Reversing an Array

As a final example of common operations, let’s consider the task of reversing the
order of the elements stored in an array. For example, suppose you have an array that
stores the following values:

list 33

[0]

38

[1]

37

[2]

3-2

[3]

314

[4]

378

[5]

One approach would be to create a new array and to store the values from the first
array into the second array in reverse order. Although that approach would be reason-
able, you should be able to solve the problem without constructing a second array.
Another approach is to conduct a series of exchanges or swaps. For example, the value
3 at the front of the list and the value 78 at the end of the list need to be swapped:

list 33

[0]

38

[1]

37

[2]

3-2

[3]

314

[4]

378

[5]

swap these

M07_REGE1944_05_SE_C07.indd 477 15/12/18 5:20 AM

478	 Chapter 7  Arrays

After swapping that pair, you can swap the next pair in (the values at indexes
1 and 4):

list 378

[0]

38

[1]

37

[2]

3-2

[3]

314

[4]

33

[5]

then swap
these

You can continue swapping until the entire list has been reversed. Before we look
at the code that will perform this reversal, let’s consider the general problem of swap-
ping two values.

Suppose you have two integer variables x and y that have the values 3 and 78:

int x = 3;

int y = 78;

How would you swap these values? A naive approach is to simply assign the values
to one another:

// will not swap properly

x = y;

y = x;

Unfortunately, this doesn’t work. You start out with the following:

x 3x 3 y 78

x 3x 78 y 78

When the first assignment statement is executed, you copy the value of y into x:

You want x to eventually become equal to 78, but if you attempt to solve the prob-
lem this way, you lose the old value of x as soon as you assign the value of y to it. The
second assignment statement then copies the new value of x, 78, back into y, which
leaves you with two variables equal to 78.

The standard solution is to introduce a temporary variable that you can use to store
the old value of x while you’re giving x its new value. You can then copy the old value
of x from the temporary variable into y to complete the swap:

int temp = x;

x = y;

y = temp;

M07_REGE1944_05_SE_C07.indd 478 15/12/18 5:20 AM

7.2  Array-Traversal Algorithms� 479

You start by copying the old value of x into temp:

x 3x 3 y 78 temp 3

x 3x 78 y 78 temp 3

x 3x 78 y 3 temp 3

Then you put the value of y into x:

Next, you copy the old value of x from temp to y:

At this point you have successfully swapped the values of x and y, so you don’t
need temp anymore.

In some programming languages, you can define this as a swap method that can be
used to exchange two int values:

// this method won’t work

public static void swap(int x, int y) {

 int temp = x;

 x = y;

 y = temp;

}

As you’ve seen, this kind of method won’t work in Java because the x and y that are
swapped will be copies of any integer values passed to them. But because arrays are
stored as objects, you can write a variation of this method that takes an array and two
indexes as parameters and swaps the values at those indexes:

public static void swap(int[] list, int i, int j) {

 int temp = list[i];

 list[i] = list[j];

 list[j] = temp;

}

The code in this method matches the code in the previous method, but instead of
using x and y it uses list[i] and list[j]. This method will work because, instead
of changing simple int variables, the method is changing the contents of the array.

Given this swap method, you can fairly easily write a reversing method. You just
have to think about what combinations of values to swap. Start by swapping the first
and last values. The sample array has a length of 6, which means that you will be
swapping the values at indexes 0 and 5. But you want to write the code so that it works

M07_REGE1944_05_SE_C07.indd 479 15/12/18 5:20 AM

480	 Chapter 7  Arrays

for an array of any length. In general, the first swap you’ll want to perform is to swap
element 0 with element (list.length − 1):

swap(list, 0, list.length − 1);

Then you’ll want to swap the second value with the second-to-last value:

swap(list, 1, list.length − 2);

Then you’ll swap the third value with the third-to-last value:

swap(list, 2, list.length − 3);

There is a pattern to these swaps that you can capture with a loop. If you use a vari-
able i for the first parameter of the call on swap and introduce a local variable j to
store an expression for the second parameter to swap, each of these calls will take the
following form:

int j = list.length – i – 1;

swap(list, i, j);

To implement the reversal, you could put the method inside the standard traversal loop:

// doesn’t quite work

for (int i = 0; i < list.length; i++) {

 int j = list.length – i – 1;

 swap(list, i, j);

}

If you were to test this code, though, you’d find that it seems to have no effect
whatsoever. The list stores the same values after executing this code as it stores ini-
tially. The problem is that this loop does too much swapping. Here is a trace of the
six swaps that are performed on the list [3, 8, 7, -2, 14, 78], with an indication of the
values of i and j for each step:

list 378

[0]

38

[1]

37

[2]

3-2

[3]

314

[4]

33

[5]

i j

list 378 314 37 3-2 38 33

i j

list 378 314 3-2 37 38 33

i j

list 378 314 37 3-2 38 33

j i

M07_REGE1944_05_SE_C07.indd 480 15/12/18 5:20 AM

7.2  Array-Traversal Algorithms� 481

list 378 38 37 3-2 314 33

j i

list 33 38 37 3-2 314 378

j i

The values of i and j cross halfway through this process. As a result, the first three
swaps successfully reverse the array, and then the three swaps that follow undo the
work of the first three. To fix this problem, you need to stop it halfway through the
process. This task is easily accomplished by changing the test:

for (int i = 0; i < list.length / 2; i++) {

 int j = list.length – i – 1;

 swap(list, i, j);

}

In the sample array, list.length is 6. Half of that is 3, which means that this
loop will execute exactly three times. That is just what you want in this case (the first
three swaps), but you should be careful to consider other possibilities. For example,
what if list.length were 7? Half of that is also 3, because of truncating division. Is
three the correct number of swaps for an odd-length list? The answer is yes. If there
are an odd number of elements, the value in the middle of the list does not need to be
swapped. So, in this case, a simple division by 2 turns out to be the right approach.

Including this code in a method, you end up with the following overall solution:

public static void reverse(int[] list) {

 for (int i = 0; i < list.length / 2; i++) {

 int j = list.length – i – 1;

 swap(list, i, j);

 }

}

String Traversal Algorithms

In Java we often think of a string as a chunk of text, but you can also think of it as a
sequence of individual characters. Viewed in this light, a string is a lot like an array.
Recall that the individual elements of a string are of type char and that you can access
the individual character values by calling the charAt method.

The same techniques we have used to write array traversal algorithms can be used
to write string traversal algorithms. The syntax is slightly different, but the logic is the
same. Our array traversal template looks like this:

for (int i = 0; i < <array>.length; i++) {

 <do something with array[i]>;

}

M07_REGE1944_05_SE_C07.indd 481 15/12/18 5:20 AM

482	 Chapter 7  Arrays

The corresponding string algorithm template looks like this:

for (int i = 0; i < <string>.length(); i++) {

 <do something with string.charAt(i)>;

}

Notice that with arrays you refer to length without using parentheses, but with
a string you do use parentheses. Notice also that the array square bracket notation is
replaced with a call on the charAt method.

For example, you can count the number of occurrences of the letter “i” in
“Mississippi” with this code:

String s = "Mississippi";

int count = 0;

for (int i = 0; i < s.length(); i++) {

 if (s.charAt(i) == ’i’) {

 count++;

 }

}

This code would correctly compute that there are four occurrences of “i” in the
string. For another example, consider the task of computing the reverse of a string.
You can traverse the string building up a new version that has the letters in reverse
order by putting each new character at the front of the string you are building up. Here
is a complete method that uses this approach:

public static String reverse(String text) {

 String result = "";

 for (int i = 0; i < text.length(); i++) {

 result = text.charAt(i) + result;

 }

 return result;

}

If you make the call reverse("Mississippi"), the method returns "ippissis-
siM".

Functional Approach

Chapter 19 describes a different approach to manipulating arrays that leads to code that
looks quite different than the examples in this section. It relies on features added to the Java
programming language starting with version 8 that allow you to manipulate arrays and other
data structures in a more declarative manner. Instead of specifying exactly how to traverse
an array, you can instead tell Java what you want to do with the array elements and allow
Java to figure out how to do the traversal. The addition of the for-each loop starting with
version 5 of Java was an initial move in this direction, but the new features go much further.

M07_REGE1944_05_SE_C07.indd 482 15/12/18 5:20 AM

7.2  Array-Traversal Algorithms� 483

Suppose, for example, that you have an array of values defined as follows:

int[] numbers = {8, 3, 2, 17};

Let’s look at the code you would write for two simple tasks: finding the sum and
printing the values. Using the standard traversal loops, you would write the following
code.

// sum an array of numbers and print them (for loop)

int sum = 0;

for (int i = 0; i < numbers.length; i++) {

 sum += numbers[i];

}

System.out.println("sum = " + sum);

for (int i = 0; i < numbers.length; i++) {

 System.out.println(numbers[i]);

}

This code produces the following output.

sum = 30

8

3

2

17

The for-each loop simplifies this code by specifying that you want to manipulate
each of the different values in the array in sequence, but it doesn’t require you to in-
clude an indexing variable to say exactly how that is done.

// sum an array of numbers and print them (for-each loop)

int sum = 0;

for (int n : numbers) {

 sum += n;

}

System.out.println("sum = " + sum);

for (int n : numbers) {

 System.out.println(n);

}

With the new Java 8 features, this becomes even simpler. The task of finding the
sum of a sequence of values is so common that there is a built-in method that does
it for you. And the task of printing each value with a call on the println method of
System.out can also be expressed in a very concise manner.

M07_REGE1944_05_SE_C07.indd 483 15/12/18 5:20 AM

484	 Chapter 7  Arrays

// sum an array of numbers and print them (functional)

int sum = Arrays.stream(numbers).sum();

System.out.println("sum = " + sum);

Arrays.stream(numbers).forEach(System.out::println);

This code doesn’t at all describe how the traversal is to be performed. Instead, you
tell Java the operations you want to have performed on the values in the array and
leave it up to Java to perform the traversal. See Chapter 19 for a more complete expla-
nation of this approach.

7.3  Reference Semantics

In Java, arrays are objects. We have been using objects since Chapter 3 but we haven’t
yet discussed in detail how they are stored. It’s about time that we explored the details.
Objects are stored in the computer’s memory in a different way than primitive data are
stored. For example, when we declare the integer variable

int x = 8;

the variable stores the actual data. So, we’ve drawn pictures like the following:

x 8

The situation is different for arrays and other objects. With regard to objects, the
variable doesn’t store the actual data. Instead, the data are stored in an object and the
variable stores a reference to the location at which the object is stored. So, we have
two different elements in the computer’s memory: the variable and the object. Thus,
when we construct an array object such as

int[] list = new int[5];

we end up with the following:

list 30

[0]

30

[1]

30

[2]

30

[3]

30

[4]

As the diagram indicates, two different values are stored in memory: the array it-
self, which appears on the right side of the diagram, and a variable called list, which
stores a reference to the array (represented in this picture as an arrow). We say that
list refers to the array.

It may take some time for you to get used to the two different approaches to stor-
ing data, but these approaches are so common that computer scientists have technical
terms to describe them. The system for the primitive types like int is known as value
semantics, and those types are often referred to as value types. The system for arrays

M07_REGE1944_05_SE_C07.indd 484 15/12/18 5:20 AM

7.3  Reference Semantics� 485

and other objects is known as reference semantics, and those types are often referred
to as reference types.

Value Semantics (Value Types)

A system in which values are stored directly and copying is achieved by
creating independent copies of values. Types that use value semantics are
called value types.

Reference Semantics (Reference Types)

A system in which references to values are stored and copying is achieved
by copying these references. Types that use reference semantics are called
reference types.

It will take us a while to explore all of the implications of this difference. The key
thing to remember is that when you are working with objects, you are always working
with references to data rather than the data itself.

At this point you are probably wondering why Java has two different systems. Java
was designed for object-oriented programming, so the first question to consider is
why Sun decided that objects should have reference semantics. There are two primary
reasons:

•	 Efficiency. Objects can be complex, which means that they can take up a lot of
space in memory. If we made copies of such objects, we would quickly run out
of memory. A String object that stores a large number of characters might take
up a lot of space in memory. But even if the String object is very large, a refer-
ence to it can be fairly small, in the same way that even a mansion has a simple
street address. As another analogy, think how we use cell phones to communicate
with people. The phones can be very tiny and easy to transport because cell phone
numbers don’t take up much space. Imagine that, instead of carrying around a set
of cell phone numbers, you tried to carry around the actual people!

•	 Sharing. Often, having a copy of something is not good enough. Suppose that
your instructor tells all of the students in the class to put their tests into a certain
box. Imagine how pointless and confusing it would be if each student made a
copy of the box. The obvious intent is that all of the students use the same box.
Reference semantics allows you to have many references to a single object, which
allows different parts of your program to share a certain object.

Without reference semantics, Java programs would be more difficult to write.
Then why did Sun also decide to include primitive types that have value semantics?
The reasons are primarily historical. Sun wanted to leverage the popularity of C and
C++, which had similar types, and to guarantee that Java programs would run quickly,
which was easier to accomplish with the more traditional primitive types. If Java’s

M07_REGE1944_05_SE_C07.indd 485 15/12/18 5:20 AM

486	 Chapter 7  Arrays

designers had a chance to redesign Java today, the company might well get rid of the
primitive types and use a consistent object model with just reference semantics.

Multiple Objects

In the previous section, you saw how to manipulate a single array object. In this section,
we will delve deeper into the implications of reference semantics by considering what
happens when there are multiple objects and multiple references to the same object.

Consider the following code:

int[] list1 = new int[5];

int[] list2 = new int[5];

for (int i = 0; i < list1.length; i++) {

 list1[i] = 2 * i + 1;

 list2[i] = 2 * i + 1;

}

int[] list3 = list2;

Each call on new constructs a new object and this code has two calls on new, so that
means we have two different objects. The code is written in such a way that list2
will always have the exact same length and sequence of values as list1. After the two
arrays are initialized, we define a third array variable that is assigned to list2. This
step creates a new reference but not a new object. After the computer executes the
code, memory would look like this:

list2 31

list3

[0]

33

[1]

35

[2]

37

[3]

39

[4]

list1 31

[0]

33

[1]

35

[2]

37

[3]

39

[4]

We have three variables but only two objects. The variables list2 and list3 both
refer to the same array object. Using the cell phone analogy, you can think of this as
two people who both have the cell phone number for the same person. That means that
either one of them can call the person. Or, as another analogy, suppose that both you
and a friend of yours know how to access your bank information online. That means
that you both have access to the same account and that either one of you can make
changes to the account.

The implication of this method is that list2 and list3 are in some sense both
equally able to modify the array to which they refer. The line of code

list2[2]++;

M07_REGE1944_05_SE_C07.indd 486 15/12/18 5:20 AM

7.3  Reference Semantics� 487

will have exactly the same effect as the line

list3[2]++;

Since both variables refer to the same array object, you can access the array through
either one.

Reference semantics help us to understand why a simple == test does not give us
what we might expect. When this test is applied to objects, it determines whether two
references are the same (not whether the objects to which they refer are somehow
equivalent). In other words, when we test whether two references are equal, we are
testing whether they refer to exactly the same object.

The variables list2 and list3 both refer to the same array object. As a result, if
we ask whether list2 == list3, the answer will be yes (the expression evaluates
to true). But if we ask whether list1 == list2, the answer will be no (the expres-
sion evaluates to false) even though we think of the two arrays as somehow being
equivalent.

Sometimes you want to know whether two variables refer to exactly the same ob-
ject, and for those situations, the simple == comparison will be appropriate. But you’ll
also want to know whether two objects are somehow equivalent in value, in which
case you should call methods like Arrays.equals or the string equals method.

Understanding reference semantics also allows you to understand why a method is
able to change the contents of an array that is passed to it as a parameter. Remember
that earlier in the chapter we considered the following method:

public static void incrementAll(int[] data) {

 for (int i = 0; i < data.length; i++) {

 data[i]++;

 }

}

We saw that when our variable list was initialized to an array of odd numbers, we
could increment all of the values in the array by means of the following line:

incrementAll(list);

When the method is called, we make a copy of the variable list. But the variable
list is not itself the array; rather, it stores a reference to the array. So, when we make
a copy of that reference, we end up with two references to the same object:

list 31

data

[0]

33

[1]

35

[2]

37

[3]

39

[4]

M07_REGE1944_05_SE_C07.indd 487 15/12/18 5:20 AM

488	 Chapter 7  Arrays

Because data and list both refer to the same object, when we change data by
saying data[i]++, we end up changing the object to which list refers. That’s why,
after the loop increments each element of data, we end up with the following:

list 32

data

[0]

34

[1]

36

[2]

38

[3]

310

[4]

The key lesson to draw from this discussion is that when we pass an array as a
parameter to a method, that method has the ability to change the contents of the array.

Before we leave the subject of reference semantics, we should describe in more
detail the concept of the special value null. It is a special keyword in Java that is used
to represent “no object”.

null

A Java keyword signifying no object.

The concept of null doesn’t have any meaning for value types like int and double
that store actual values. But it can make sense to set a variable that stores a reference
to null. This is a way of telling the computer that you want to have the variable, but
you haven’t yet come up with an object to which it should refer. So you can use null
for variables of any object type, such as a String or array:

String s = null;

int[] list = null;

There is a difference between setting a variable to an empty string and setting
it to null. When you set a variable to an empty string, there is an actual object to
which your variable refers (although not a very interesting object). When you set
a variable to null, the variable doesn’t yet refer to an actual object. If you try to
use the variable to access the object when it has been set to null, Java will throw a
NullPointerException.

7.4  Advanced Array Techniques

In this section we’ll discuss some advanced uses of arrays, such as algorithms that
cannot be solved with straightforward traversals. we’ll also see how to create arrays
that store objects instead of primitive values.

Shifting Values in an Array

You’ll often want to move a series of values in an array. For example, suppose you
have an array of integers that stores the sequence of values [3, 8, 9, 7, 5] and you want
to send the value at the front of the list to the back and keep the order of the other

VideoNote

M07_REGE1944_05_SE_C07.indd 488 15/12/18 5:20 AM

7.4  Advanced Array Techniques� 489

values the same. In other words, you want to move the 3 to the back, yielding the list
[8, 9, 7, 5, 3]. Let’s explore how to write code to perform that action.

Suppose you have a variable of type int[] called list of length 5 that stores the
values [3, 8, 9, 7, 5]:

list 33

[0]

38

[1]

39

[2]

37

[3]

35

[4]

The shifting operation is similar to the swap operation discussed in the previous
section, and you’ll find that it is useful to use a temporary variable here as well. The 3
at the front of the list is supposed to go to the back of the list, and the other values are
supposed to rotate forward. You can make the task easier by storing the value at the
front of the list (3, in this example) into a local variable:

int first = list[0];

With that value safely tucked away, you now have to shift the other four values to
the left by one position:

list 33

[0]

38

[1]

39

[2]

37

[3]

35

[4]

list 38 39 37 35 35

The overall task breaks down into four different shifting operations, each of which
is a simple assignment statement:

list[0] = list[1];

list[1] = list[2];

list[2] = list[3];

list[3] = list[4];

Obviously you’d want to write this as a loop rather than writing a series of indi-
vidual assignment statements. Each of the preceding statements is of the form

list[i] = list[i + 1];

You’ll replace list element [i] with the value currently stored in list element [i + 1],
which shifts that value to the left. You can put this line of code inside a standard travers-
ing loop:

for (int i = 0; i < list.length; i++) {

 list[i] = list[i + 1];

}

M07_REGE1944_05_SE_C07.indd 489 15/12/18 5:20 AM

490	 Chapter 7  Arrays

This loop is almost the right answer, but it has an off-by-one bug. This loop will
execute five times for the sample array, but you only want to shift four values (you
want to do the assignment for i equal to 0, 1, 2, and 3, but not for i equal to 4). So,
this loop goes one too many times. On the last iteration of the loop, when i is equal to
4, the loop executes the following line of code:

list[i] = list[i + 1];

This line becomes:

list[4] = list[5];

There is no value list[5] because the array has only five elements, with indexes
0 through 4. So, this code generates an ArrayIndexOutOfBoundsException. To fix
the problem, alter the loop so that it stops one iteration early:

for (int i = 0; i < list.length – 1; i++) {

 list[i] = list[i + 1];

}

In place of the usual list.length, use (list.length − 1). You can think of the
minus one in this expression as offsetting the plus one in the assignment statement.

Of course, there is one more detail you must address. After shifting the values to the
left, you’ve made room at the end of the list for the value that used to be at the front of
the list (which is currently stored in a local variable called first). When the loop has
finished executing, you have to place this value at index 4:

list[list.length − 1] = first;

Here is the final method:

public static void rotateLeft(int[] list) {

 int first = list[0];

 for (int i = 0; i < list.length − 1; i++) {

 list[i] = list[i + 1];

 }

 list[list.length − 1] = first;

}

An interesting variation on this method is to rotate the values to the right instead of
rotating them to the left. To perform this inverse operation, you want to take the value
that is currently at the end of the list and bring it to the front, shifting the remaining
values to the right. So, if a variable called list initially stores the values [3, 8, 9, 7, 5],
it should bring the 5 to the front and store the values [5, 3, 8, 9, 7].

M07_REGE1944_05_SE_C07.indd 490 15/12/18 5:20 AM

7.4  Advanced Array Techniques� 491

Begin by tucking away the value that is being rotated into a temporary variable:

int last = list[list.length − 1];

Then shift the other values to the right:

list 33

[0]

38

[1]

39

[2]

37

[3]

35

[4]

list 33 33 38 39 37

In this case, the four individual assignment statements would be the following:

list[1] = list[0];

list[2] = list[1];

list[3] = list[2];

list[4] = list[3];

A more general way to write this is the following line of code:

list[i] = list[i − 1];

If you put this code inside the standard for loop, you get the following:

// doesn’t work

for (int i = 0; i < list.length; i++) {

 list[i] = list[i − 1];

}

There are two problems with this code. First, there is another off-by-one bug. The
first assignment statement you want to perform would set list[1] to contain the
value that is currently in list[0], but this loop sets list[0] to list[−1]. Java gen-
erates an ArrayIndexOutOfBoundsException because there is no value list[−1].
You want to start i at 1, not 0:

// still doesn’t work

for (int i = 1; i < list.length; i++) {

 list[i] = list[i − 1];

}

M07_REGE1944_05_SE_C07.indd 491 15/12/18 5:20 AM

492	 Chapter 7  Arrays

However, this version of the code doesn’t work either. It avoids the exception, but
think about what it does. The first time through the loop it assigns list[1] to what is
in list[0]:

list 33

[0]

38

[1]

39

[2]

37

[3]

35

[4]

list 33 33 39 37 35

What happened to the value 8? It’s overwritten with the value 3. The next time
through the loop list[2] is set to be list[1]:

list 33

[0]

33

[1]

39

[2]

37

[3]

35

[4]

list 33 33 33 37 35

You might say, “Wait a minute . . . list[1] isn’t a 3, it’s an 8.” It was an 8 when
you started, but the first iteration of the loop replaced the 8 with a 3, and now the 3 has
been copied into the spot where 9 used to be.

The loop continues in this way, putting 3 into every cell of the array. Obviously,
that’s not what you want. To make this code work, you have to run the loop in re-
verse order (from right to left instead of left to right). So let’s back up to where we
started:

list 33

[0]

38

[1]

39

[2]

37

[3]

35

[4]

We tucked away the final value of the list into a local variable. That frees up the
final array position. Now, assign list[4] to be what is in list[3]:

list 33

[0]

38

[1]

39

[2]

37

[3]

35

[4]

list 33 38 39 37 37

This wipes out the 5 that was at the end of the list, but that value is safely stored
away in a local variable. And once you’ve performed this assignment statement, you

M07_REGE1944_05_SE_C07.indd 492 15/12/18 5:20 AM

7.4  Advanced Array Techniques� 493

free up list[3], which means you can now set list[3] to be what is currently in
list[2]:

list 33

[0]

38

[1]

39

[2]

37

[3]

37

[4]

list 33 38 39 39 37

The process continues in this manner, copying the 8 from index 1 to index 2 and
copying the 3 from index 0 to index 1, leaving you with the following:

list 33 33 38 39 37

[0] [1] [2] [3] [4]

At this point, the only thing left to do is to put the 5 stored in the local variable at
the front of the list:

list 35 33 38 39 37

[0] [1] [2] [3] [4]

You can reverse the for loop by changing the i++ to i−− and adjusting the initial-
ization and test. The final method is as follows:

public static void rotateRight(int[] list) {

 int last = list[list.length − 1];

 for (int i = list.length − 1; i >= 1; i−−) {

 list[i] = list[i − 1];

 }

 list[0] = last;

}

Arrays of Objects

All of the arrays we have looked at so far have stored primitive values like simple int
values, but you can have arrays of any Java type. Arrays of objects behave slightly
differently, though, because objects are stored as references rather than as data values.
Constructing an array of objects is usually a two-step process, because you normally
have to construct both the array and the individual objects.

As an example, Java has a Point class as part of its java.awt package. Each
Point object is used for storing the (x, y) coordinates of a point in two-dimensional
space. (We will discuss this class in more detail in the next chapter, but for now we

M07_REGE1944_05_SE_C07.indd 493 15/12/18 5:20 AM

494	 Chapter 7  Arrays

will just construct a few objects from it.) Suppose that you want to construct an array
of Point objects. Consider the following statement:

Point[] points = new Point[3];

This statement declares a variable called points that refers to an array of length 3
that stores references to Point objects. Using the new keyword to construct the array
doesn’t construct any actual Point objects. Instead it constructs an array of length 3,
each element of which can store a reference to a Point. When Java constructs the array,
it auto-initializes these array elements to the zero-equivalent for the type. The zero-
equivalent for all reference types is the special value null, which indicates “no object”:

points 3null

[0]

3null

[1]

3null

[2]

The actual Point objects must be constructed separately with the new keyword, as
in the following code:

Point[] points = new Point[3];

points[0] = new Point(3, 7);

points[1] = new Point(4, 5);

points[2] = new Point(6, 2);

After these lines of code execute, your program will have created individual Point
objects referred to by the various array elements:

points

[0] [1] [2]

x 3x 3 y 7 x 3x x4 y 5 36 y 2

Notice that the new keyword is required in four different places, because there are
four objects to be constructed: the array itself and the three individual Point objects.
You could also use the curly brace notation for initializing the array, in which case you
don’t need the new keyword to construct the array itself:

Point[] points = {new Point(3, 7), new Point(4, 5), new Point(6, 2)};

Command-Line Arguments

As you’ve seen since Chapter 1, whenever you define a main method, you’re required
to include as its parameter String[] args, which is an array of String objects.
Java itself initializes this array if the user provides what are known as command-line

M07_REGE1944_05_SE_C07.indd 494 15/12/18 5:20 AM

7.4  Advanced Array Techniques� 495

arguments when invoking Java. For example, the user could execute a Java class
called DoSomething from a command prompt or terminal by using a command like:

java DoSomething

The user has the option to type extra arguments, as in the following:

java DoSomething temperature.dat temperature.out

In this case the user has specified two extra arguments that are file names that the
program should use (e.g., the names of an input and output file). If the user types these
extra arguments when starting up Java, the String[] args parameter to main will be
initialized to an array of length 2 that stores these two strings:

args

[0] [1]

"temperature.dat" "temperature.out"

Nested Loop Algorithms

All of the algorithms we have seen have been written with a single loop. But many
computations require nested loops. For example, suppose that you were asked to print
all inversions in an array of integers. An inversion is defined as a pair of numbers in
which the first number in the list is greater than the second number.

In a sorted list such as [1, 2, 3, 4], there are no inversions at all and there is nothing
to print. But if the numbers appear instead in reverse order, [4, 3, 2, 1], then there are
many inversions to print. We would expect output like the following:

(4, 3)

(4, 2)

(4, 1)

(3, 2)

(3, 1)

(2, 1)

Notice that any given number (e.g., 4 in the list above) can produce several differ-
ent inversions, because it might be followed by several smaller numbers (1, 2, and 3
in the example). For a list that is partially sorted, as in [3, 1, 4, 2], there are only a few
inversions, so you would produce output like this:

(3, 1)

(3, 2)

(4, 2)

M07_REGE1944_05_SE_C07.indd 495 15/12/18 5:20 AM

496	 Chapter 7  Arrays

This problem can’t be solved with a single traversal because we are looking for
pairs of numbers. There are many possible first values in the pair and many possible
second values in the pair. Let’s develop a solution using pseudocode.

We can’t produce all pairs with a single loop, but we can use a single loop to con-
sider all possible first values:

for (every possible first value) {

 print all inversions that involve this first value.

}

Now we just need to write the code to find all the inversions for a given first value.
That requires us to write a second, nested loop:

for (every possible first value) {

 for (every possible second value) {

 if (first value > second value) {

 print(first, second).

 }

 }

}

This problem is fairly easy to turn into Java code, although the loop bounds turn out
to be a bit tricky. For now, let’s use our standard traversal loop for each:

for (int i = 0; i < data.length; i++) {

 for (int j = 0; j < data.length; j++) {

 if (data[i] > data[j]) {

 System.out.println("(" + data[i] + ", " + data[j] + ")");

 }

 }

}

The preceding code isn’t quite right. Remember that for an inversion, the second
value has to appear after the first value in the list. In this case, we are computing
all possible combinations of a first and second value. To consider only values that
come after the given first value, we have to start the second loop at i + 1 instead of
starting at 0. We can also make a slight improvement by recognizing that because an
inversion requires a pair of values, there is no reason to include the last number of
the list as a possible first value. So the outer loop involving i can end one iteration
earlier:

for (int i = 0; i < data.length – 1; i++) {

 for (int j = i + 1; j < data.length; j++) {

M07_REGE1944_05_SE_C07.indd 496 15/12/18 5:20 AM

7.5  Multidimensional Arrays� 497

 if (data[i] > data[j]) {

 System.out.println("(" + data[i] + ", " + data[j] + ")");

 }

 }

}

When you write nested loops like these, it is a common convention to use i for the
outer loop, j for the loop inside the outer loop, and k if there is a loop inside the j loop.

7.5  Multidimensional Arrays

The array examples in the previous sections all involved what are known as
one-dimensional arrays (a single row or a single column of data). Often, you’ll want
to store data in a multidimensional way. For example, you might want to store a
two-dimensional grid of data that has both rows and columns. Fortunately, you can
form arrays of arbitrarily many dimensions:

•	 double: one double

•	 double[]: a one-dimensional array of doubles

•	 double[][]: a two-dimensional grid of doubles

•	 double[][][]: a three-dimensional collection of doubles

•	 ...

Arrays of more than one dimension are called multidimensional arrays.

Multidimensional Array

An array of arrays, the elements of which are accessed with multiple integer
indexes.

Rectangular Two-Dimensional Arrays

The most common use of a multidimensional array is a two-dimensional array of a
certain width and height. For example, suppose that on three separate days you took a
series of five temperature readings. You can define a two-dimensional array that has
three rows and five columns as follows:

double[][] temps = new double[3][5];

Notice that on both the left and right sides of this assignment statement, you have to
use a double set of square brackets. When you are describing the type on the left, you
have to make it clear that this is not just a one-dimensional sequence of values, which
would be of type double[], but instead a two-dimensional grid of values, which is of
type double[][]. On the right, when you construct the array, you must specify the

M07_REGE1944_05_SE_C07.indd 497 15/12/18 5:20 AM

498	 Chapter 7  Arrays

dimensions of the grid. The normal convention is to list the row first followed by the
column. The resulting array would look like this:

temps

30.0

[0]

[0] 30.0

[1]

[1]

30.0

[2]

[2]

30.0

[3]

30.0

30.0 30.0 30.0 30.0 30.0

30.0 30.0 30.0 30.0 30.0

[4]

As with one-dimensional arrays, the values are initialized to 0.0 and the indexes
start with 0 for both rows and columns. Once you’ve created such an array, you can
refer to individual elements by providing specific row and column numbers (in that
order). For example, to set the fourth value of the first row to 98.3 and to set the first
value of the third row to 99.4, you would write the following code:

temps[0][3] = 98.3; // fourth value of first row

temps[2][0] = 99.4; // first value of third row

After the program executes these lines of code, the array would look like this:

temps

30.0

[0]

[0] 30.0

[1]

[1]

30.0

[2]

[2]

398.3

[3]

30.0

30.0 30.0 30.0 30.0 30.0

399.4 30.0 30.0 30.0 30.0

[4]

It is helpful to think of referring to individual elements in a stepwise fashion, start-
ing with the name of the array. For example, if you want to refer to the first value of
the third row, you obtain it through the following steps:

temps the entire grid
temps[2] the entire third row
temps[2][0]    the first element of the third row

You can pass multidimensional arrays as parameters just as you pass
one-dimensional arrays. You need to be careful about the type, though. To pass the
temperature grid, you would have to use a parameter of type double[][] (with both
sets of brackets). For example, here is a method that prints the grid:

public static void print(double[][] grid) {

 for (int i = 0; i < grid.length; i++) {

 for (int j = 0; j < grid[i].length; j++) {

 System.out.print(grid[i][j] + " ");

 }

 System.out.println();

 }

}

M07_REGE1944_05_SE_C07.indd 498 15/12/18 5:20 AM

7.5  Multidimensional Arrays� 499

Notice that to ask for the number of rows you ask for grid.length and to ask for
the number of columns you ask for grid[i].length.

The Arrays.toString method mentioned earlier in this chapter does work on
multidimensional arrays, but it produces a poor result. When used with the preceding
array temps, it produces output such as the following:

[[D@14b081b, [D@1015a9e, [D@1e45a5c]

This poor output is because Arrays.toString works by concatenating the String
representations of the array’s elements. In this case the elements are arrays them-
selves, so they do not convert into Strings properly. To correct the problem you can
use a different method called Arrays.deepToString that will return better results for
multidimensional arrays:

System.out.println(Arrays.deepToString(temps));

The call produces the following output:

[[0.0, 0.0, 0.0, 98.3, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0],

[99.4, 0.0, 0.0, 0.0, 0.0]]

Arrays can have as many dimensions as you want. For example, if you want a three-
dimensional 4 by 4 by 4 cube of integers, you would write the following line of code:

int[][][] numbers = new int[4][4][4];

The normal convention for the order of values is the plane number, followed by the
row number, followed by the column number, although you can use any convention
you want as long as your code is written consistently.

Jagged Arrays

The previous examples have involved rectangular grids that have a fixed number of
rows and columns. It is also possible to create a jagged array in which the number of
columns varies from row to row.

To construct a jagged array, divide the construction into two steps: Construct the
array for holding rows first, and then construct each individual row. For example, to
construct an array that has two elements in the first row, four elements in the second
row, and three elements in the third row, you can write the following lines of code:

int[][] jagged = new int[3][];

jagged[0] = new int[2];

jagged[1] = new int[4];

jagged[2] = new int[3];

M07_REGE1944_05_SE_C07.indd 499 15/12/18 5:20 AM

500	 Chapter 7  Arrays

This code would construct an array that looks like this:

jagged

30

[0]

[0] 30

[1]

[1]

[2]

[2]

[3]

30 30 30 30

30 30 30

We can explore this technique by writing a program that produces the rows of what
is known as Pascal’s triangle. The numbers in the triangle have many useful math-
ematical properties. For example, row n of Pascal’s triangle contains the coefficients
obtained when you expand the equation:

Here are the results for n between 0 and 4:

If you pull out just the coefficients, you get the following values:

 1
 1 1
 1 2 1
 1 3 3 1
1 4 6 4 1

These rows of numbers form a five-row Pascal’s triangle. One of the properties
of the triangle is that if you are given any row, you can use it to compute the next
row. For example, let’s start with the last row from the preceding triangle:

1 4 6 4 1

We can compute the next row by adding adjacent pairs of values together. So,
we add together the first pair of numbers 11 + 42 , then the second pair of numbers
14 + 62 , and so on:

5 10 10 5

(1 + 4)

5

(4 + 6)

10

(6 + 4)

10

(4 + 1)

5

(x + y)n

(x + y)0 = 1
(x + y)1 = x + y
(x + y)2 = x2 + 2xy + y2

(x + y)3 = x3 + 3x2y + 3xy2 + y3

(x + y)4 = x4 + 4x3y + 6x2y2 + 4xy3 + y4

M07_REGE1944_05_SE_C07.indd 500 15/12/18 5:20 AM

7.5  Multidimensional Arrays� 501

Then we put a 1 at the front and back of this list of numbers, and we end up with the
next row of the triangle:

 1
 1 1
 1 2 1
 1 3 3 1
 1 4 6 4 1
1 5 10 10 5 1

This property of the triangle provides a technique for computing it. We can con-
struct it row by row, computing each new row from the values in the previous row. In
other words, we write the following loop (assuming that we have a two-dimensional
array called triangle in which to store the answer):

for (int i = 0; i < triangle.length; i++) {

 construct triangle[i] using triangle[i – 1].

}

We just need to flesh out the details of how a new row is constructed. This is a
jagged array because each row has a different number of elements. Looking at the tri-
angle, you’ll see that the first row (row 0) has one value in it, the second row (row 1)
has two values in it, and so on. In general, row i has (i + 1) values, so we can refine
our pseudocode as follows:

for (int i = 0; i < triangle.length; i++) {

 triangle[i] = new int[i + 1];

 fill in triangle[i] using triangle[i – 1].

}

We know that the first and last values in each row should be 1:

for (int i = 0; i < triangle.length; i++) {

 triangle[i] = new int[i + 1];

 triangle[i][0] = 1;

 triangle[i][i] = 1;

 fill in the middle of triangle[i] using triangle[i – 1].

}

M07_REGE1944_05_SE_C07.indd 501 15/12/18 5:20 AM

502	 Chapter 7  Arrays

And we know that the middle values come from the previous row. To figure out
how to compute them, let’s draw a picture of the array we are attempting to build:

triangle

31

[0]

[0]

[1]

[1]

[2]

[2]

[3]

31 31

31 32 31

[3] 31 33 33 31

[4] 31 34 36 34 31

[5] 31 35 310 310 35

[4]

31

[5]

We have already written code to fill in the 1 that appears at the beginning and end
of each row. We now need to write code to fill in the middle values. Look at row 5 for
an example. The value 5 in column 1 comes from the sum of the values 1 in column 0
and 4 in column 1 in the previous row. The value 10 in column 2 comes from the sum
of the values in columns 1 and 2 in the previous row.

More generally, each of these middle values is the sum of the two values from the
previous row that appear just above and to the left of it. In other words, for column j
the values are computed as follows:

triangle[i][j] = (value above and left) + (value above).

We can turn this into actual code by using the appropriate array indexes:

triangle[i][j] = triangle[i − 1][j − 1] + triangle[i − 1][j];

We need to include this statement in a for loop so that it assigns all of the middle
values. The for loop is the final step in converting our pseudocode into actual code:

for (int i = 0; i < triangle.length; i++) {

 triangle[i] = new int[i + 1];

 triangle[i][0] = 1;

 triangle[i][i] = 1;

 for (int j = 1; j < i; j++) {

 triangle[i][j] = triangle[i − 1][j − 1] + triangle[i − 1][j];

 }

}

If we include this code in a method along with a printing method similar to the grid-
printing method described earlier, we end up with the following complete program:

 1 // This program constructs a jagged two-dimensional array

 2 // that stores Pascal’s Triangle. It takes advantage of the

 3 // fact that each value other than the 1s that appear at the

 4 // beginning and end of each row is the sum of two values

M07_REGE1944_05_SE_C07.indd 502 15/12/18 5:20 AM

7.5  Multidimensional Arrays� 503

 5 // from the previous row.

 6

 7 public class PascalsTriangle {

 8 public static void main(String[] args) {

 9 int[][] triangle = new int[11][];

10 fillIn(triangle);

11 print(triangle);

12 }

13

14 public static void fillIn(int[][] triangle) {

15 for (int i = 0; i < triangle.length; i++) {

16 triangle[i] = new int[i + 1];

17 triangle[i][0] = 1;

18 triangle[i][i] = 1;

19 for (int j = 1; j < i; j++) {

20 triangle[i][j] = triangle[i − 1][j − 1]

21 + triangle[i − 1][j];

22 }

23 }

24 }

25

26 public static void print(int[][] triangle) {

27 for (int i = 0; i < triangle.length; i++) {

28 for (int j = 0; j < triangle[i].length; j++) {

29 System.out.print(triangle[i][j] + " ");

30 }

31 System.out.println();

32 }

33 }

34 }

This program produces the following output:

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1

1 9 36 84 126 126 84 36 9 1

1 10 45 120 210 252 210 120 45 10 1

M07_REGE1944_05_SE_C07.indd 503 15/12/18 5:20 AM

504	 Chapter 7  Arrays

7.6  Arrays of Pixels

Recall from Supplement 3G that images are stored on computers as a two-dimensional
grid of colored dots known as pixels. One of the most common applications of
two-dimensional (2D) arrays is for manipulating the pixels of an image. Popular apps
like Instagram provide filters and options for modifying images by applying algo-
rithms to their pixels; for example, you can make an image black-and-white, sharpen
it, enhance the colors and contrast, or make it look like an old faded photograph. The
two-dimensional rectangular nature of an image makes a 2D array a natural way to
represent its pixel data.

Supplement 3G introduced the DrawingPanel class that we use to represent a win-
dow for drawing 2D shapes and colors. Recall that an image is composed of pixels
whose locations are specified with integer coordinates starting from the top-left corner
of the image at (0, 0). The various drawing commands of the panel’s Graphics object,
such as drawRect and fillOval, change the color of regions of pixels. Colors are
usually specified by Color objects, but the full range of colors comes from mixtures
of red, green, and blue elements specified by integers that range from 0 to 255 inclu-
sive. Each combination of three integers specifies a particular color and is known as
an RGB value.

The DrawingPanel includes several methods for getting and setting the color of
pixels, listed in Table 7.3. You can interact with a single pixel, or you can grab all of
the pixels of the image as a 2D array and manipulate the entire array. The array is in
row-major order; that is, the first index of the array is the y-coordinate and the sec-
ond is the x-coordinate. For example, a[r][c] represents the pixel at position (x=c,
y=r). For efficiency it is generally recommended to use the array-based versions of
the methods; the individual-pixel methods run slowly when applied repeatedly over all
pixels of a large image.

The following DrawPurpleTriangle example program uses getPixels and
setPixels to fill a triangular region of the panel with a purple color. Figure 7.1
shows the graphical output of the program. Notice that you must call setPixels
at the end to see the updated image; changing the array will not produce any effect
on the screen until you tell the panel to update itself using the new contents of the
array.

Table 7.3  DrawingPanel methods related to pixels

Method Description

getPixel(x, y) returns a pixel’s color as a Color object

getPixels() returns all pixels’ colors as a 2D array of Color objects, in row-

major order (first index is row or y, second index is column or x)

setPixel(x, y, color) sets a pixel’s color to the given Color object’s color

setPixels(pixels) sets all pixels’ colors from given 2D array of Color objects,

resizing the panel if necessary to match the array’s dimensions

M07_REGE1944_05_SE_C07.indd 504 15/12/18 5:20 AM

7.6  Arrays of Pixels� 505

 1 // This program demonstrates the DrawingPanel's

 2 // getPixels and setPixels methods for

 3 // manipulating pixels of an image.

 4

 5 import java.awt.*;

 6

 7 public class DrawPurpleTriangle {

 8 public static void main(String[] args) {

 9 DrawingPanel panel = new DrawingPanel(300, 200);

10 Color[][] pixels = panel.getPixels();

11 for (int row = 50; row <= 150; row++) {

12 for (int col = 50; col <= row; col++) {

13 pixels[row][col] = Color.MAGENTA;

14 }

15 }

16 panel.setPixels(pixels);

17 }

18 }

You can use getPixels and setPixels to draw a shape like our purple triangle, but
a more typical usage of these methods would be to grab the panel’s existing state and
alter it in some interesting way. The following Mirror program demonstrates the use of
a 2D array of Color objects. The program’s mirror method accepts a DrawingPanel
parameter and flips the pixel contents horizontally, swapping each pixel’s color with
the one at the opposite horizontal location. The code uses the dimensions of the array to
represent the size of the image; pixels.length is its height and pixels[0].length
(the length of the first row of the 2D array) is its width. Figure 7.2 shows the program’s
graphical output before and after mirror is called.

Figure 7.1  Output of DrawPurpleTriangle

M07_REGE1944_05_SE_C07.indd 505 15/12/18 5:20 AM

506	 Chapter 7  Arrays

 1 // This program contains a mirror method that flips the appearance

 2 // of a DrawingPanel horizontally pixel-by-pixel.

 3

 4 import java.awt.*;

 5

 6 public class Mirror {

 7 public static void main(String[] args) {

 8 DrawingPanel panel = new DrawingPanel(300, 200);

 9 Graphics g = panel.getGraphics();

10 g.drawString("Hello, world!", 20, 50);

11 g.fillOval(10, 100, 20, 70);

12 mirror(panel);

13 }

14

15 // Flips the pixels of the given drawing panel horizontally.

16 public static void mirror(DrawingPanel panel) {

17 Color[][] pixels = panel.getPixels();

18 for (int row = 0; row < pixels.length; row++) {

19 for (int col = 0; col < pixels[0].length / 2; col++) {

20 // swap with pixel at "mirrored" location

21 int opposite = pixels[0].length - 1 - col;

22 Color px = pixels[row][col];

23 pixels[row][col] = pixels[row][opposite];

24 pixels[row][opposite] = px;

25 }

26 }

27 panel.setPixels(pixels);

28 }

29 }

Often you’ll want to extract the individual red, green, and blue components of a
color to manipulate them. Each pixel’s Color object has methods to help you do this.

Figure 7.2  Output of Mirror before and after mirroring

M07_REGE1944_05_SE_C07.indd 506 15/12/18 5:20 AM

7.6  Arrays of Pixels� 507

Table 7.4  Color methods related to pixel RGB components

Method Description

getRed() returns the red component from 0-255

getGreen() returns the green component from 0-255

getBlue() returns the blue component from 0-255

The getRed, getGreen, and getBlue methods extract the relevant components out of
an RGB integer. Table 7.4 lists the relevant methods.

The following code shows a method that computes the negative of an image, which
is found by taking the opposite of each color’s RGB values. For example, the oppo-
site of (red = 255, green = 100, blue = 35) is (red = 0, green = 155, blue = 220). The
simplest way to compute the negative is to subtract the pixel’s RGB values from the
maximum color value of 255. Figure 7.3 shows an example output.

// Produces the negative of the given image by inverting all color

// values in the panel.

public static void negative(DrawingPanel panel) {

 Color[][] pixels = panel.getPixels();

 for (int row = 0; row < pixels.length; row++) {

 for (int col = 0; col < pixels[0].length; col++) {

 // extract red/green/blue components from 0-255

 int r = 255 - pixels[row][col].getRed();

 int g = 255 - pixels[row][col].getGreen();

 int b = 255 - pixels[row][col].getBlue();

 // update the pixel array with the new color value

 pixels[row][col] = new Color(r, g, b);

 }

 }

 panel.setPixels(pixels);

}

All of the previous examples have involved making changes to a 2D pixel array in
place. But sometimes you want to create an image with different dimensions, or want
to set each pixel based on the values of pixels around it, and therefore you need to cre-
ate a new pixel array. The following example shows a stretch method that widens
the contents of a DrawingPanel to twice their current width. To do so, it creates an
array newPixels that is twice as wide as the existing one. (Remember that the first
index of the 2D array is y and the second is x, so to widen the array, the code must
double the array’s second dimension.) The setPixels method will resize the panel if
necessary to accommodate our new larger array of pixels.

The loop to fill the new array sets the value at each index to the value at half as
large an x-index in the original array. So, for example, the original array’s pixel value

M07_REGE1944_05_SE_C07.indd 507 15/12/18 5:20 AM

508	 Chapter 7  Arrays

Figure 7.3  Negative of an image (before and after)

at (52, 34) is used to fill the new array’s pixels at (104, 68) and (105, 68). Figure 7.4
shows the graphical output of the stretched image.

// Stretches the given panel to be twice as wide.

// Any shapes and colors drawn on the panel are stretched to fit.

public static void stretch(DrawingPanel panel) {

 Color[][] pixels = panel.getPixels();

 Color[][] newPixels = new Color[pixels.length][2 * pixels[0].length];

 for (int row = 0; row < pixels.length; row++) {

 for (int col = 0; col < 2 * pixels[0].length; col++) {

 newPixels[row][col] = pixels[row][col / 2];

 }

 }

 panel.setPixels(newPixels);

}

Figure 7.4  Horizontally stretched image (before and after)

M07_REGE1944_05_SE_C07.indd 508 15/12/18 5:20 AM

7.7  Case Study: Benford’s Law� 509

The pixel-based methods shown in this section are somewhat inefficient because
they create large arrays of Color objects, which takes a lot of time and memory. These
methods aren’t efficient enough for an animation or a game. The DrawingPanel pro-
vides some additional methods like getPixelsRGB that use specially packed integers
to represent red, green, and blue color information instead of Color objects to im-
prove the speed and memory usage at the cost of a bit of code complexity. If you are
interested, you can read about these additional methods in the online DrawingPanel
documentation at buildingjavaprograms.com.

7.7  Case Study: Benford’s Law

Let’s look at a more complex program example that involves using arrays. When you
study real-world data you will often come across a curious result that is known as
Benford’s Law, named after a physicist named Frank Benford who stated it in 1938.

Benford’s Law involves looking at the first digit of a series of numbers. For ex-
ample, suppose that you were to use a random number generator to generate integers
in the range of 100 to 999 and you looked at how often the number begins with 1, how
often it begins with 2, and so on. Any decent random number generator would spread
the answers out evenly among the nine different regions, so we’d expect to see each
digit about one-ninth of the time (11.1%). But with a lot of real-world data, we see a
very different distribution.

When we examine data that matches the Benford distribution, we see a first digit
of 1 over 30% of the time (almost one third) and, at the other extreme, a first digit of
9 only about 4.6% of the time (less than one in twenty cases). Table 7.5 shows the
expected distribution for data that follows Benford’s Law.

Why would the distribution turn out this way? Why so many 1s? Why so few 9s?
The answer is that exponential sequences have different properties than simple linear se-
quences. In particular, exponential sequences have a lot more numbers that begin with 1.

Table 7.5  Expected Distribution
under Benford’s Law

First Digit Frequency

1 30.1%

2 17.6%

3 12.5%

4 9.7%

5 7.9%

6 6.7%

7 5.8%

8 5.1%

9 4.6%

M07_REGE1944_05_SE_C07.indd 509 15/12/18 5:20 AM

510	 Chapter 7  Arrays

To explore this phenomenon, let’s look at two different sequences of numbers: one
that grows linearly and one that grows exponentially. If you start with the number 1
and add 0.2 to it over and over, you get the following linear sequence:

1, 1.2, 1.4, 1.6, 1.8, 2, 2.2, 2.4, 2.6, 2.8, 3, 3.2, 3.4, 3.6, 3.8, 4, 4.2, 4.4, 4.6, 4.8,
5, 5.2, 5.4, 5.6, 5.8, 6, 6.2, 6.4, 6.6, 6.8, 7, 7.2, 7.4, 7.6, 7.8, 8, 8.2, 8.4, 8.6, 8.8,
9, 9.2, 9.4, 9.6, 9.8, 10

In this sequence there are five numbers that begin with 1, five numbers that begin
with 2, five numbers that begin with 3, and so on. For each digit, there are five num-
bers that begin with that digit. That’s what we expect to see with data that goes up by
a constant amount each time.

But consider what happens when we make it an exponential sequence instead. Let’s
again start with 1 and continue until we get to 10, but this time let’s multiply each
successive number by 1.05 (we’ll limit ourselves to displaying just two digits after the
decimal, but the actual sequence takes into account all of the digits):

1.00, 1.05, 1.10, 1.16, 1.22, 1.28, 1.34, 1.41, 1.48, 1.55, 1.63, 1.71, 1.80, 1.89,
1.98, 2.08, 2.18, 2.29, 2.41, 2.53, 2.65, 2.79, 2.93, 3.07, 3.23, 3.39, 3.56, 3.73,
3.92, 4.12, 4.32, 4.54, 4.76, 5.00, 5.25, 5.52, 5.79, 6.08, 6.39, 6.70, 7.04, 7.39,
7.76, 8.15, 8.56, 8.99, 9.43, 9.91, 10.40

In this sequence there are 15 numbers that begin with 1 (31.25%), 8 numbers
that begin with 2 (16.7%), and so on. There are only 2 numbers that begin with 9
(4.2%). In fact, the distribution of digits is almost exactly what you see in the table
for Benford’s Law.

There are many real-world phenomena that exhibit an exponential character. For
example, population tends to grow exponentially in most regions. There are many
other data sets that also seem to exhibit the Benford pattern, including sunspots, sala-
ries, investments, heights of buildings, and so on. Benford’s Law has been used to try
to detect accounting fraud under the theory that when someone is making up data, they
are likely to use a more random process that won’t yield a Benford style distribution.

For our purposes, let’s write a program that reads a file of integers and that shows
the distribution of the leading digit. We’ll read the data from a file and will run it on
several sample inputs. First, though, let’s consider the general problem of tallying.

Tallying Values

In programming we often find ourselves wanting to count the number of occurrences
of some set of values. For example, we might want to know how many people got a
100 on an exam, how many got a 99, how many got a 98, and so on. Or we might want
to know how many days the temperature in a city was above 100 degrees, how many
days it was in the 90s, how many days it was in the 80s, and so on. The approach is
very nearly the same for each of these tallying tasks. Let’s look at a small tallying task
in which there are only five values to tally.

VideoNote

M07_REGE1944_05_SE_C07.indd 510 15/12/18 5:20 AM

7.7  Case Study: Benford’s Law� 511

Suppose that a teacher scores quizzes on a scale of 0 to 4 and wants to know the dis-
tribution of quiz scores. In other words, the teacher wants to know how many scores of
0 there are, how many scores of 1, how many scores of 2, how many scores of 3, and
how many scores of 4. Suppose that the teacher has included all of the scores in a data
file like the following:

1 4 1 0 3 2 1 4 2 0

3 0 2 3 0 4 3 3 4 1

2 4 1 3 1 4 3 3 2 4

2 3 0 4 1 4 4 1 4 1

The teacher could hand-count the scores, but it would be much easier to use a com-
puter to do the counting. How can you solve the problem? First you have to recognize
that you are doing five separate counting tasks: You are counting the occurrences of
the number 0, the number 1, the number 2, the number 3, and the number 4. You will
need five counters to solve this problem, which means that an array is a great way to
store the data. In general, whenever you find yourself thinking that you need n of some
kind of data, you should think about using an array of length n.

Each counter will be an int, so you want an array of five int values:

int[] count = new int[5];

This line of code will allocate the array of five integers and will auto-initialize
each to 0:

count 30

[0]

30

[1]

30

[2]

30

[3]

30

[4]

You’re reading from a file, so you’ll need a Scanner and a loop that reads scores
until there are no more scores to read:

Scanner input = new Scanner(new File("tally.dat"));

while (input.hasNextInt()) {

 int next = input.nextInt();

 // process next

}

To complete this code, you need to figure out how to process each value. You know
that next will be one of five different values: 0, 1, 2, 3, or 4. If it is 0, you want to
increment the counter for 0, which is count[0]; if it is 1, you want to increment the
counter for 1, which is count[1], and so on. We have been solving problems like this
one with nested if/else statements:

if (next == 0) {

 count[0]++;

M07_REGE1944_05_SE_C07.indd 511 15/12/18 5:20 AM

512	 Chapter 7  Arrays

} else if (next == 1) {

 count[1]++;

} else if (next == 2) {

 count[2]++;

} else if (next == 3) {

 count[3]++;

} else { // next == 4

 count[4]++;

}

But with an array, you can solve this problem much more directly:

count[next]++;

This line of code is so short compared to the nested if/else construct that you
might not realize at first that it does the same thing. Let’s simulate exactly what hap-
pens as various values are read from the file.

When the array is constructed, all of the counters are initialized to 0:

count 30

[0]

30

[1]

30

[2]

30

[3]

30

[4]

The first value in the input file is a 1, so the program reads that into next. Then it
executes this line of code:

count[next]++;

Because next is 1, this line of code becomes

count[1]++;

So the counter at index [1] is incremented:

count 30

[0]

31

[1]

30

[2]

30

[3]

30

[4]

Then a 4 is read from the input file, which means count[4] is incremented:

count 30

[0]

31

[1]

30

[2]

30

[3]

31

[4]

Next, another 1 is read from the input file, which increments count[1]:

count 30

[0]

32

[1]

30

[2]

30

[3]

31

[4]

M07_REGE1944_05_SE_C07.indd 512 15/12/18 5:20 AM

7.7  Case Study: Benford’s Law� 513

Then a 0 is read from the input file, which increments count[0]:

count 31

[0]

32

[1]

30

[2]

30

[3]

31

[4]

Notice that in just this short set of data you’ve jumped from index 1 to index 4, then
back down to index 1, then to index 0. The program continues executing in this man-
ner, jumping from counter to counter as it reads values from the file. This ability to
jump around in the data structure is what’s meant by random access.

After processing all of the data, the array ends up looking like this:

count 35

[0]

39

[1]

36

[2]

39

[3]

311

[4]

After this loop finishes executing, you can report the total for each score by using
the standard traversing loop with a println:

for (int i = 0; i < count.length; i++) {

 System.out.println(i + "\t" + count[i]);

}

With the addition of a header for the output, the complete program is as follows:

 1 // Reads a series of values and reports the frequency of

 2 // occurrence of each value.

 3

 4 import java.io.*;

 5 import java.util.*;

 6

 7 public class Tally {

 8 public static void main(String[] args)

 9 throws FileNotFoundException {

10 Scanner input = new Scanner(new File("tally.dat"));

11 int[] count = new int[5];

12 while (input.hasNextInt()) {

13 int next = input.nextInt();

14 count[next]++;

15 }

16 System.out.println("Value\tOccurrences");

17 for (int i = 0; i < count.length; i++) {

18 System.out.println(i + "\t" + count[i]);

19 }

20 }

21 }

M07_REGE1944_05_SE_C07.indd 513 15/12/18 5:20 AM

514	 Chapter 7  Arrays

Given the sample input file shown earlier, this program produces the following output:

Value Occurrences

0 5

1 9

2 6

3 9

4 11

It is important to realize that a program written with an array is much more flexible
than programs written with simple variables and if/else statements. For example,
suppose you wanted to adapt this program to process an input file with exam scores
that range from 0 to 100. The only change you would have to make would be to al-
locate a larger array:

int[] count = new int[101];

If you had written the program with an if/else approach, you would have to add 96
new branches to account for the new range of values. When you use an array solution,
you just have to modify the overall size of the array. Notice that the array size is one
more than the highest score (101 rather than 100) because the array is zero-based and
because you can actually get 101 different scores on the test, including 0 as a possibility.

Completing the Program

Now that we’ve explored the basic approach to tallying, we can fairly easily adapt
it to the problem of analyzing a data file to find the distribution of leading digits. As
we stated earlier, we’re assuming that we have a file of integers. To count the leading
digits, we will need to be able to get the leading digit of each. This task is specialized
enough that it deserves to be in its own method.

So let’s first write a method called firstDigit that returns the first digit of an
integer. If the number is a one-digit number, then the number itself will be the answer.
If the number is not a one-digit number, then we can chop off its last digit because we
don’t need it. If we do the chopping in a loop, then eventually we’ll get down to a one-
digit number (the first digit). This leads us to write the following loop:

while (result >= 10) {

 result = result / 10;

}

We don’t expect to get any negative numbers, but it’s not a bad idea to make sure
we don’t have any negatives. So putting this into a method that also handles negatives,
we get the following code:

public static int firstDigit(int n) {

 int result = Math.abs(n);

M07_REGE1944_05_SE_C07.indd 514 15/12/18 5:20 AM

7.7  Case Study: Benford’s Law� 515

 while (result >= 10) {

 result = result / 10;

 }

 return result;

}

In the previous section we explored the general approach to tallying. In this case we
want to tally the digits 0 through 9, so we want an array of length 10. Otherwise the
solution is nearly identical to what we did in the last section. We can put the tallying
code into a method that constructs an array and returns the tally:

public static int[] countDigits(Scanner input) {

 int[] count = new int[10];

 while (input.hasNextInt()) {

 int n = input.nextInt();

 count[firstDigit(n)]++;

 }

 return count;

}

Notice that instead of tallying n in the body of the loop, we are instead tallying
firstDigit(n) (just the first digit, not the entire number).

The value 0 presents a potential problem for us. Benford’s Law is meant to apply
to data that comes from an exponential sequence. But even if you are increasing expo-
nentially, if you start with 0, you never get beyond 0. As a result, it is best to eliminate
the 0 values from the calculation. Often they won’t occur at all.

When reporting results, then, let’s begin by reporting the excluded zeros if they
exist:

if (count[0] > 0) {

 System.out.println("excluding " + count[0] + " zeros");

}

For the other digits, we want to report the number of occurrences of each and also
the percentage of each. To figure the percentage, we’ll need to know the sum of the
values. This is a good place to introduce a method that finds the sum of an array of
integers. It’s a fairly straightforward array traversal problem that can be solved with a
for-each loop:

public static int sum(int[] data) {

 int sum = 0;

 for (int n : data) {

 sum += n;

 }

M07_REGE1944_05_SE_C07.indd 515 15/12/18 5:20 AM

516	 Chapter 7  Arrays

 return sum;

}

Now we can compute the total number of digits by calling the method and subtract-
ing the number of 0s:

int total = sum(count) – count[0];

And once we have the total number of digits, we can write a loop to report each
of the percentages. To compute the percentages, we multiply each count by 100 and
divide by the total number of digits. We have to be careful to multiply by 100.0 rather
than 100 to make sure that we are computing the result using double values. Otherwise
we’ll get truncated integer division and won’t get any digits after the decimal point:

for (int i = 1; i < count.length; i++) {

 double pct = count[i] * 100.0 / total;

 System.out.println(i + " " + count[i] + " " + pct);

}

Notice that the loop starts at 1 instead of 0 because we have excluded the zeros
from our reporting.

Here is a complete program that puts these pieces together. It also uses printf
statements to format the output and includes a header for the table and a total afterward:

 1 // This program finds the distribution of leading digits in a set

 2 // of positive integers. The program is useful for exploring the

 3 // phenomenon known as Benford’s Law.

 4

 5 import java.io.*;

 6 import java.util.*;

 7

 8 public class Benford {

 9 public static void main(String[] args)

10 throws FileNotFoundException {

11 Scanner console = new Scanner(System.in);

12 System.out.println("Let's count those leading digits...");

13 System.out.print("input file name? ");

14 String name = console.nextLine();

15 Scanner input = new Scanner(new File(name));

16 int[] count = countDigits(input);

17 reportResults(count);

18 }

19

20 // Reads integers from input, computing an array of counts

21 // for the occurrences of each leading digit (0–9).

M07_REGE1944_05_SE_C07.indd 516 15/12/18 5:20 AM

7.7  Case Study: Benford’s Law� 517

22 public static int[] countDigits(Scanner input) {

23 int[] count = new int[10];

24 while (input.hasNextInt()) {

25 int n = input.nextInt();

26 count[firstDigit(n)]++;

27 }

28 return count;

29 }

30

31 // Reports percentages for each leading digit, excluding zeros

32 public static void reportResults(int[] count) {

33 System.out.println();

34 if (count[0] > 0) {

35 System.out.println("excluding " + count[0] + " zeros");

36 }

37 int total = sum(count) – count[0];

38 System.out.println("Digit Count Percent");

39 for (int i = 1; i < count.length; i++) {

40 double pct = count[i] * 100.0 / total;

41 System.out.printf("%5d %5d %6.2f\n", i, count[i], pct);

42 }

43 System.out.printf("Total %5d %6.2f\n", total, 100.0);

44 }

45

46 // returns the sum of the integers in the given array

47 public static int sum(int[] data) {

48 int sum = 0;

49 for (int n : data) {

50 sum += n;

51 }

52 return sum;

53 }

54

55 // returns the first digit of the given number

56 public static int firstDigit(int n) {

57 int result = Math.abs(n);

58 while (result >= 10) {

59 result = result / 10;

60 }

61 return result;

62 }

63 }

M07_REGE1944_05_SE_C07.indd 517 15/12/18 5:20 AM

518	 Chapter 7  Arrays

Now that we have a complete program, let’s see what we get when we analyze various
data sets. The Benford distribution shows up with population data because population tends
to grow exponentially. Let’s use data from the web page http://www.census.gov/popest/
which contains population estimates for various U.S. counties. The data set has information
on 3000 different counties with populations varying from 100 individuals to over 9 million
for the census year 2000. Here is a sample output of our program using these data:

Let's count those leading digits...

input file name? county.txt

Digit Count Percent

 1 970 30.90

 2 564 17.97

 3 399 12.71

 4 306 9.75

 5 206 6.56

 6 208 6.63

 7 170 5.24

 8 172 5.48

 9 144 4.59

Total 3139 100.00

These percentages are almost exactly the numbers predicted by Benford’s Law.
Data that obey Benford’s Law have an interesting property. It doesn’t matter what

scale you use for the data. So if you are measuring heights, for example, it doesn’t mat-
ter whether you measure in feet, inches, meters, or furlongs. In our case, we counted the
number of people in each U.S. county. If we instead count the number of human hands
in each county, then we have to double each number. Look at the preceding output and
see if you can predict the result when you double each number. Here is the actual result:

Let's count those leading digits...

input file name? county2.txt

Digit Count Percent

 1 900 28.67

 2 555 17.68

 3 415 13.22

 4 322 10.26

 5 242 7.71

 6 209 6.66

 7 190 6.05

 8 173 5.51

 9 133 4.24

Total 3139 100.00

M07_REGE1944_05_SE_C07.indd 518 15/12/18 5:20 AM

7.7  Case Study: Benford’s Law� 519

Notice that there is very little change. Doubling the numbers has little effect be-
cause if the original data is exponential in nature, then the same will be true of the dou-
bled numbers. Here is another sample run that triples the county population numbers:

Let's count those leading digits...

input file name? county3.txt

Digit Count Percent

 1 926 29.50

 2 549 17.49

 3 385 12.27

 4 327 10.42

 5 258 8.22

 6 228 7.26

 7 193 6.15

 8 143 4.56

 9 130 4.14

Total 3139 100.00

Another data set that shows Benford characteristics is the count of sunspots that
occur on any given day. Robin McQuinn maintains a web page at http://sidc.oma.
be/html/sunspot.html that has daily counts of sunspots going back to 1818. Here is a
sample execution using these data:

Let's count those leading digits...

input file name? sunspot.txt

excluding 4144 zeros

Digit Count Percent

 1 5405 31.24

 2 1809 10.46

 3 2127 12.29

 4 1690 9.77

 5 1702 9.84

 6 1357 7.84

 7 1364 7.88

 8 966 5.58

 9 882 5.10

Total 17302 100.00

Notice that on this execution the program reports the exclusion of some 0 values.

M07_REGE1944_05_SE_C07.indd 519 15/12/18 5:20 AM

520	 Chapter 7  Arrays

Chapter Summary

An array is an object that groups multiple primitive values

or objects of the same type under one name. Each indi-

vidual value, called an element, is accessed with an integer

index that ranges from 0 to one less than the array’s length.

Attempting to access an array element with an index

of less than 0 or one that is greater than or equal to the

array’s length will cause the program to crash with an

ArrayIndexOutOfBoundsException.

Arrays are often traversed using for loops. The length of

an array is found by accessing its length field, so the loop

over an array can process indexes from 0 to length – 1.

Array elements can also be accessed in order using a type

of loop called a for-each loop.

Arrays have several limitations, such as fixed size and lack

of support for common operations like == and println. To

perform these operations, you must either use the Arrays

class or write for loops that process each element of the

array.

Several common array algorithms, such as printing an

array or comparing two arrays to each other for equality,

are implemented by traversing the elements and examin-

ing or modifying each one.

Java arrays are objects and use reference semantics, in

which variables store references to values rather than to

the actual values themselves. This means that two vari-

ables can refer to the same array or object. If the array is

modified through one of its references, the modification

will also be seen in the other.

Arrays of objects are actually arrays of references to

objects. A newly declared and initialized array of objects

actually stores null in all of its element indexes, so each

element must be initialized individually or in a loop to

store an actual object.

A multidimensional array is an array of arrays. These are
often used to store two-dimensional data, such as data in
rows and columns or xy data in a two-dimensional space.

Self-Check Problems

Section 7.1: Array Basics

1.	 Which of the following is the correct syntax to declare an array of ten integers?

a.	int a[10] = new int[10];

b.	int[10] a = new int[10];

c.	[]int a = [10]int;

d.	int a[10];

e.	int[] a = new int[10];

2.	 What expression should be used to access the first element of an array of integers called numbers? What expression

should be used to access the last element of numbers, assuming it contains 10 elements? What expression can be

used to access its last element, regardless of its length?

3.	 Write code that creates an array of integers named data of size 5 with the following contents:

data 327

[0]

351

[1]

333

[2]

3-1

[3]

3101

[4]

M07_REGE1944_05_SE_C07.indd 520 15/12/18 5:20 AM

Self-Check Problems� 521

4.	 Write code that stores all odd numbers between -6 and 38 into an array using a loop. Make the array’s size exactly

large enough to store the numbers.

Then, try generalizing your code so that it will work for any minimum and maximum values, not just -6 and 38.

5.	 What elements does the array numbers contain after the following code is executed?

int[] numbers = new int[8];

numbers[1] = 4;

numbers[4] = 99;

numbers[7] = 2;

int x = numbers[1];

numbers[x] = 44;

numbers[numbers[7]] = 11; // uses numbers[7] as index

6.	 What elements does the array data contain after the following code is executed?

int[] data = new int[8];

data[0] = 3;

data[7] = -18;

data[4] = 5;

data[1] = data[0];

int x = data[4];

data[4] = 6;

data[x] = data[0] * data[1];

7.	 What is wrong with the following code?

int[] first = new int[2];

first[0] = 3;

first[1] = 7;

int[] second = new int[2];

second[0] = 3;

second[1] = 7;

// print the array elements

System.out.println(first);

System.out.println(second);

// see if the elements are the same

if (first == second) {

 System.out.println("They contain the same elements.");

} else {

 System.out.println("The elements are different.");

}

M07_REGE1944_05_SE_C07.indd 521 15/12/18 5:20 AM

522	 Chapter 7  Arrays

8.	 Which of the following is the correct syntax to declare an array of the given six integer values?

a.	int[] a = {17, -3, 42, 5, 9, 28};

b.	int a {17, -3, 42, 5, 9, 28};

c.	int[] a = new int[6] {17, -3, 42, 5, 9, 28};

d.	int[6] a = {17, -3, 42, 5, 9, 28};

e.	int[] a = int [17, -3, 42, 5, 9, 28] {6};

9.	 Write a piece of code that declares an array called data with the elements 7, -1, 13, 24, and 6. Use only one state-

ment to initialize the array.

10.	Write a piece of code that examines an array of integers and reports the maximum value in the array. Consider

putting your code into a method called max that accepts the array as a parameter and returns the maximum value.

Assume that the array contains at least one element.

11.	Write a method called average that computes the average (arithmetic mean) of all elements in an array of inte-

gers and returns the answer as a double. For example, if the array passed contains the values [1, –2, 4, –4,

9, –6, 16, –8, 25, –10], the calculated average should be 2.5. Your method accepts an array of integers

as its parameter and returns the average.

Section 7.2: Array-Traversal Algorithms

12.	What is an array traversal? Give an example of a problem that can be solved by traversing an array.

13.	Write code that uses a for loop to print each element of an array named data that contains five integers:

element [0] is 14

element [1] is 5

element [2] is 27

element [3] is −3

element [4] is 2598

Consider generalizing your code so that it will work on an array of any size.

14.	What elements does the array list contain after the following code is executed?

int[] list = {2, 18, 6, −4, 5, 1};

for (int i = 0; i < list.length; i++) {

 list[i] = list[i] + (list[i] / list[0]);

}

15.	Write a piece of code that prints an array of integers in reverse order, in the same format as the print method

from Section 7.2. Consider putting your code into a method called printBackwards that accepts the array as a

parameter.

16.	Describe the modifications that would be necessary to change the count and equals methods developed in

Section 7.2 to process arrays of Strings instead of arrays of integers.

17.	Write a method called allLess that accepts two arrays of integers and returns true if each element in the first

array is less than the element at the same index in the second array. Your method should return false if the arrays

are not the same length.

M07_REGE1944_05_SE_C07.indd 522 15/12/18 5:20 AM

Self-Check Problems� 523

Section 7.3: Reference Semantics

18.	Why does a method to swap two array elements work correctly when a method to swap two integer values does not?

19.	What is the output of the following program?

public class ReferenceMystery1 {

 public static void main(String[] args) {

 int x = 0;

 int[] a = new int[4];

 x = x + 1;

 mystery(x, a);

 System.out.println(x + " " + Arrays.toString(a));

 x = x + 1;

 mystery(x, a);

 System.out.println(x + " " + Arrays.toString(a));

 }

 public static void mystery(int x, int[] a) {

 x = x + 1;

 a[x] = a[x] + 1;

 System.out.println(x + " " + Arrays.toString(a));

 }

}

20.	What is the output of the following program?

public class ReferenceMystery2 {

 public static void main(String[] args) {

 int x = 1;

 int[] a = new int[2];

 mystery(x, a);

 System.out.println(x + " " + Arrays.toString(a));

 x−−;

 a[1] = a.length;

 mystery(x, a);

 System.out.println(x + " " + Arrays.toString(a));

 }

 public static void mystery(int x, int[] list) {

 list[x]++;

 x++;

 System.out.println(x + " " + Arrays.toString(list));

 }

}

21.	Write a method called swapPairs that accepts an array of integers and swaps the elements at adjacent indexes.

That is, elements 0 and 1 are swapped, elements 2 and 3 are swapped, and so on. If the array has an odd length, the

final element should be left unmodified. For example, the list [10, 20, 30, 40, 50] should become [20, 10,

40, 30, 50] after a call to your method.

M07_REGE1944_05_SE_C07.indd 523 15/12/18 5:20 AM

524	 Chapter 7  Arrays

Section 7.4: Advanced Array Techniques

22.	What are the values of the elements in the array numbers after the following code is executed?

int[] numbers = {10, 20, 30, 40, 50, 60, 70, 80, 90, 100};

for (int i = 0; i < 9; i++) {

 numbers[i] = numbers[i + 1];

}

23.	What are the values of the elements in the array numbers after the following code is executed?

int[] numbers = {10, 20, 30, 40, 50, 60, 70, 80, 90, 100};

for (int i = 1; i < 10; i++) {

 numbers[i] = numbers[i − 1];

}

24.	Consider the following method, mystery:

public static void mystery(int[] a, int[] b) {

 for (int i = 0; i < a.length; i++) {

 a[i] += b[b.length − 1 – i];

 }

}

What are the values of the elements in array a1 after the following code executes?

int[] a1 = {1, 3, 5, 7, 9};

int[] a2 = {1, 4, 9, 16, 25};

mystery(a1, a2);

25.	Consider the following method, mystery2:

public static void mystery2(int[] a, int[] b) {

 for (int i = 0; i < a.length; i++) {

 a[i] = a[2 * i % a.length] – b[3 * i % b.length];

 }

}

What are the values of the elements in array a1 after the following code executes?

int[] a1 = {2, 4, 6, 8, 10, 12, 14, 16};

int[] a2 = {1, 1, 2, 3, 5, 8, 13, 21};

mystery2(a1, a2);

26.	Consider the following method, mystery3:

public static void mystery3(int[] data, int x, int y) {

 data[data[x]] = data[y];

 data[y] = x;

}

What are the values of the elements in the array numbers after the following code executes?

int[] numbers = {3, 7, 1, 0, 25, 4, 18, −1, 5};

mystery3(numbers, 3, 1);

M07_REGE1944_05_SE_C07.indd 524 15/12/18 5:20 AM

Self-Check Problems� 525

mystery3(numbers, 5, 6);

mystery3(numbers, 8, 4);

27.	Consider the following method:

public static int mystery4(int[] list) {

 int x = 0;

 for (int i = 1; i < list.length; i++) {

 int y = list[i] - list[0];

 if (y > x) {

 x = y;

 }

 }

 return x;

}

What value does the method return when passed each of the following arrays?

a.	{5}

b.	{3, 12}

c.	{4, 2, 10, 8}

d.	{1, 9, 3, 5, 7}

e.	{8, 2, 10, 4, 10, 9}

28.	Consider the following method:

public static void mystery5(int[] nums) {

 for (int i = 0; i < nums.length − 1; i++) {

 if (nums[i] > nums[i + 1]) {

 nums[i + 1]++;

 }

 }

}

What are the final contents of each of the following arrays if each is passed to the above method?

a.	{8}

b.	{14, 7}

c.	{7, 1, 3, 2, 0, 4}

d.	{10, 8, 9, 5, 5}

e.	{12, 11, 10, 10, 8, 7}

29.	Write a piece of code that computes the average String length of the elements of an array of Strings. For exam-

ple, if the array contains {"belt", "hat", "jelly", "bubble gum"}, the average length is 5.5.

30.	Write code that accepts an array of Strings as its parameter and indicates whether that array is a palindrome—

that is, whether it reads the same forward as backward. For example, the array {"alpha", "beta", "gamma",

"delta", "gamma", "beta", "alpha"} is a palindrome.

Section 7.5: Multidimensional Arrays

31.	What elements does the array numbers contain after the following code is executed?

int[][] numbers = new int[3][4];

for (int r = 0; r < numbers.length; r++) {

M07_REGE1944_05_SE_C07.indd 525 15/12/18 5:20 AM

526	 Chapter 7  Arrays

 for (int c = 0; c < numbers[0].length; c++) {

 numbers[r][c] = r + c;

 }

}

32.	Assume that a two-dimensional rectangular array of integers called data has been declared with four rows and

seven columns. Write a loop to initialize the third row of data to store the numbers 1 through 7.

33.	Write a piece of code that constructs a two-dimensional array of integers with 5 rows and 10 columns. Fill the array

with a multiplication table, so that array element [i][j] contains the value i * j. Use nested for loops to build

the array.

34.	Assume that a two-dimensional rectangular array of integers called matrix has been declared with six rows and

eight columns. Write a loop to copy the contents of the second column into the fifth column.

35.	Consider the following method:

public static void mystery2d(int[][] a) {

 for (int r = 0; r < a.length; r++) {

 for (int c = 0; c < a[0].length - 1; c++) {

 if (a[r][c + 1] > a[r][c]) {

 a[r][c] = a[r][c + 1];

 }

 }

 }

}

If a two-dimensional array numbers is initialized to store the following integers, what are its contents after the call

shown?

int[][] numbers = {{3, 4, 5, 6},

 {4, 5, 6, 7},

 {5, 6, 7, 8}};

mystery2d(numbers);

36.	Write a piece of code that constructs a jagged two-dimensional array of integers with five rows and an increasing

number of columns in each row, such that the first row has one column, the second row has two, the third has three,

and so on. The array elements should have increasing values in top-to-bottom, left-to-right order (also called row-

major order). In other words, the array’s contents should be the following:

1

2, 3

4, 5, 6

7, 8, 9, 10

11, 12, 13, 14, 15

Use nested for loops to build the array.

37.	When examining a 2D array of pixels, how could you figure out the width and height of the image even if you don’t

have access to the DrawingPanel object?

38.	Finish the following code for a method that converts an image into its red channel; that is, removing any green or

blue from each pixel and keeping only the red component.

M07_REGE1944_05_SE_C07.indd 526 15/12/18 5:20 AM

Exercises� 527

public static void toRedChannel(DrawingPanel panel) {

 Color[][] pixels = panel.getPixels();

 for (int row = 0; row < pixels.length; row++) {

 for (int col = 0; col < pixels[0].length; col++) {

 // your code goes here

 }

 }

 panel.setPixels(pixels);

}

39.	What is the result of the following code? What will the image look like?

public static void pixelMystery(DrawingPanel panel) {

 Color[][] pixels = panel.getPixels();

 for (int row = 0; row < pixels.length; row++) {

 for (int col = 0; col < pixels[0].length; col++) {

 int n = Math.min(row + col, 255);

 pixels[row][col] = new Color(n, n, n);

 }

 }

 panel.setPixels(pixels);

}

Exercises

1.	 Write a method called lastIndexOf that accepts an array of integers and an integer value as its parameters and

returns the last index at which the value occurs in the array. The method should return –1 if the value is not found.

For example, in the array [74, 85, 102, 99, 101, 85, 56], the last index of the value 85 is 5.

2.	 Write a method called range that returns the range of values in an array of integers. The range is defined as 1 more

than the difference between the maximum and minimum values in the array. For example, if an array called list

contains the values [36, 12, 25, 19, 46, 31, 22], the call of range(list) should return 35 (46 - 12 + 1).

You may assume that the array has at least one element.

3.	 Write a method called countInRange that accepts an array of integers, a minimum value, and a maximum value

as parameters and returns the count of how many elements from the array fall between the minimum and maximum

(inclusive). For example, in the array [14, 1, 22, 17, 36, 7, –43, 5], for minimum value 4 and maximum

value 17, there are four elements whose values fall between 4 and 17.

4.	 Write a method called isSorted that accepts an array of real numbers as a parameter and returns true if the

list is in sorted (nondecreasing) order and false otherwise. For example, if arrays named list1 and list2

store [16.1, 12.3, 22.2, 14.4] and [1.5, 4.3, 7.0, 19.5, 25.1, 46.2] respectively, the calls

isSorted(list1) and isSorted(list2) should return false and true respectively. Assume the array has at

least one element. A one-element array is considered to be sorted.

5.	 Write a method called mode that returns the most frequently occurring element of an array of integers. Assume that

the array has at least one element and that every element in the array has a value between 0 and 100 inclusive. Break

ties by choosing the lower value. For example, if the array passed contains the values [27, 15, 15, 11, 27],

M07_REGE1944_05_SE_C07.indd 527 15/12/18 5:20 AM

528	 Chapter 7  Arrays

your method should return 15. (Hint: You may wish to look at the Tally program from this chapter to get an idea

how to solve this problem.) Can you write a version of this method that does not rely on the values being between 0

and 100?

6.	 Write a method called stdev that returns the standard deviation of an array of integers. Standard deviation is com-

puted by taking the square root of the sum of the squares of the differences between each element and the mean,

divided by one less than the number of elements. (It’s just that simple!) More concisely and mathematically, the

standard deviation of an array a is written as follows:

stdev1a2 = H a
a.length-1

i=0

(a[i] - average(a)2)

a.length - 1

For example, if the array passed contains the values [1, –2, 4, –4, 9, –6, 16, –8, 25, –10], your

method should return approximately 11.237.

7.	 Write a method called kthLargest that accepts an integer k and an array a as its parameters and returns the ele-

ment such that k elements have greater or equal value. If k = 0, return the largest element; if k = 1, return the

second-largest element, and so on. For example, if the array passed contains the values [74, 85, 102, 99,

101, 56, 84] and the integer k passed is 2, your method should return 99 because there are two values at least

as large as 99 (101 and 102). Assume that 0 ≤ k < a.length. (Hint: Consider sorting the array or a copy of the

array first.)

8.	 Write a method called median that accepts an array of integers as its parameter and returns the median of the num-

bers in the array. The median is the number that appears in the middle of the list if you arrange the elements in order.

Assume that the array is of odd size (so that one sole element constitutes the median) and that the numbers in the

array are between 0 and 99 inclusive. For example, the median of [5, 2, 4, 17, 55, 4, 3, 26, 18, 2, 17]

is 5 and the median of [42, 37, 1, 97, 1, 2, 7, 42, 3, 25, 89, 15, 10, 29, 27] is 25. (Hint: You

may wish to look at the Tally program from earlier in this chapter for ideas.)

9.	 Write a method called minGap that accepts an integer array as a parameter and returns the minimum difference or

gap between adjacent values in the array, where the gap is defined as the later value minus the earlier value. For

example, in the array [1, 3, 6, 7, 12], the first gap is 2 13 - 12 , the second gap is 3 16 - 32 , the third gap

is 1 17 - 62 , and the fourth gap is 5 112 - 72 . So your method should return 1 if passed this array. The mini-

mum gap could be a negative number if the list is not in sorted order. If you are passed an array with fewer than two

elements, return 0.

10.	Write a method called percentEven that accepts an array of integers as a parameter and returns the percentage of

even numbers in the array as a real number. For example, if the array stores the elements [6, 2, 9, 11, 3], then

your method should return 40.0. If the array contains no even elements or no elements at all, return 0.0.

11.	Write a method called isUnique that accepts an array of integers as a parameter and returns a boolean value indi-

cating whether or not the values in the array are unique (true for yes, false for no). The values in the list are con-

sidered unique if there is no pair of values that are equal. For example, if passed an array containing [3, 8, 12,

2, 9, 17, 43, –8, 46], your method should return true, but if passed [4, 7, 3, 9, 12, –47, 3, 74],

your method should return false because the value 3 appears twice.

12.	Write a method called priceIsRight that mimics the guessing rules from the game show The Price Is Right. The

method accepts as parameters an array of integers representing the contestants’ bids and an integer representing a

correct price. The method returns the element in the bids array that is closest in value to the correct price without

M07_REGE1944_05_SE_C07.indd 528 15/12/18 5:20 AM

Exercises� 529

being larger than that price. For example, if an array called bids stores the values [200, 300, 250, 1, 950,

40], the call of priceIsRight(bids, 280) should return 250, since 250 is the bid closest to 280 without going

over 280. If all bids are larger than the correct price, your method should return –1.

13.	Write a method called longestSortedSequence that accepts an array of integers as a parameter and returns the

length of the longest sorted (nondecreasing) sequence of integers in the array. For example, in the array [3, 8,

10, 1, 9, 14, –3, 0, 14, 207, 56, 98, 12], the longest sorted sequence in the array has four values in it

(the sequence -3, 0, 14, 207), so your method would return 4 if passed this array. Sorted means nondecreasing, so a

sequence could contain duplicates. Your method should return 0 if passed an empty array.

14.	Write a method called contains that accepts two arrays of integers a1 and a2 as parameters and that returns a

boolean value indicating whether or not the sequence of elements in a2 appears in a1 (true for yes, false for

no). The sequence must appear consecutively and in the same order. For example, consider the following arrays:

int[] list1 = {1, 6, 2, 1, 4, 1, 2, 1, 8};

int[] list2 = {1, 2, 1};

The call of contains(list1, list2) should return true because the sequence of values in list2 [1,

2, 1] is contained in list1 starting at index 5. If list2 had stored the values [2, 1, 2], the call of

contains(list1, list2) would return false. Any two lists with identical elements are considered to contain

each other. Every array contains the empty array, and the empty array does not contain any arrays other than the

empty array itself.

15.	Write a method called collapse that accepts an array of integers as a parameter and returns a new array containing

the result of replacing each pair of integers with the sum of that pair. For example, if an array called list stores

the values [7, 2, 8, 9, 4, 13, 7, 1, 9, 10], then the call of collapse(list) should return a new array

containing [9, 17, 17, 8, 19]. The first pair from the original list is collapsed into 9 17 + 22 , the second pair

is collapsed into 17 18 + 92 , and so on. If the list stores an odd number of elements, the final element is not col-

lapsed. For example, if the list had been [1, 2, 3, 4, 5], then the call would return [3, 7, 5]. Your method

should not change the array that is passed as a parameter.

16.	Write a method called append that accepts two integer arrays as parameters and returns a new array that contains

the result of appending the second array’s values at the end of the first array. For example, if arrays list1 and

list2 store [2, 4, 6] and [1, 2, 3, 4, 5] respectively, the call of append(list1, list2) should return

a new array containing [2, 4, 6, 1, 2, 3, 4, 5]. If the call instead had been append(list2, list1), the

method would return an array containing [1, 2, 3, 4, 5, 2, 4, 6].

17.	Write a method called vowelCount that accepts a String as a parameter and produces and returns an array of inte-

gers representing the counts of each vowel in the string. The array returned by your method should hold five ele-

ments: the first is the count of As, the second is the count of Es, the third Is, the fourth Os, and the fifth Us. Assume

that the string contains no uppercase letters. For example, the call vowelCount("i think, therefore i am")

should return the array [1, 3, 3, 1, 0].

18.	Write a method called evenBeforeOdd that accepts an array of integers and rearranges its elements so that all even

values appear before all odds. For example, if the array is [5, 4, 2, 11, 9, 10, 4, 7, 3], then after the

method has been called, one acceptable ordering of the elements would be [4, 2, 10, 4, 5, 11, 9, 7, 3].

The exact order of the elements does not matter, so long as all even values appear before all odd values. The array

might contain no even elements or no odd elements. Do not use any temporary arrays in your solution, and do not

call Arrays.sort.

M07_REGE1944_05_SE_C07.indd 529 15/12/18 5:20 AM

530	 Chapter 7  Arrays

19.	Write a method called wordLengths that accepts a Scanner for an input file as its parameter. Your method should

open the given file, count the number of letters in each token in the file, and output a result diagram of how many

words contain each number of letters. For example, consider a file containing the following text:

Before sorting:

13 23 480 –18 75

hello how are you feeling today

After sorting:

–18 13 23 75 480

are feeling hello how today you

Your method should produce the following output to the console. Use tabs so that the stars line up:

1: 0

2: 6 ******

3: 10 **********

4: 0

5: 5 *****

6: 1 *

7: 2 **

8: 2 **

Assume that no token in the file is more than 80 characters in length.

20.	Write a method called matrixAdd that accepts a pair of two-dimensional arrays of integers as parameters, treats the arrays

as two-dimensional matrixes, and returns their sum. The sum of two matrixes A and B is a matrix C, where for every row

i and column j, Cij = Aij + Bij. You may assume that the arrays passed as parameters have the same dimensions.

21.	Write a method called isMagicSquare that accepts a two-dimensional array of integers as a parameter and returns true

if it is a magic square. A square matrix is a magic square if all of its row, column, and diagonal sums are equal. For exam-

ple, [[2, 7, 6], [9, 5, 1], [4, 3, 8]] is a square matrix because all eight of the sums are exactly 15.

22.	Write a method grayscale that converts a color image into a black-and-white image. This is done by averaging the

red, green, and blue components of each pixel. For example, if a pixel has RGB values of (red = 100, green = 30

blue = 80), the average of the three components is 1100 + 30 + 802 >3 = 70, so that pixel becomes (red = 70,

green = 70, blue = 70).

S

M07_REGE1944_05_SE_C07.indd 530 15/12/18 5:20 AM

Exercises� 531

23.	Write a method transpose that accepts a DrawingPanel as a parameter and inverts the image about both the x

and y axes. You may assume that the image is square, that is, that its width and height are equal.

24.	Write a method zoomIn that accepts a DrawingPanel as a parameter and converts it into an image twice as large

in both dimensions. Each pixel from the original image becomes a cluster of 4 pixels (2 rows and 2 columns) in the

new zoomed image.

S

S

M07_REGE1944_05_SE_C07.indd 531 15/12/18 5:20 AM

532	 Chapter 7  Arrays

25.	Write methods rotateLeft and rotateRight that rotate the pixels of an image counter-clockwise or clockwise

by 90 degrees respectively. You should not assume that the image is square in shape; its width and height might be

different.

26.	Write a method blur that makes an image look “blurry” using the following specific algorithm. Set each pixel to

be the average of itself and the 8 pixels around it. That is, for the pixel at position (x, y), set its RGB value to be the

average of the RGB values at positions (x - 1, y - 1) through (x + 1, y + 1). Be careful not to go out of bounds

near the edge of the image; if a pixel lies along the edge of the image, average whatever neighbors it does have.

Programming Projects

1.	 Java’s type int has a limit on how large an integer it can store. This limit can be circumvented by representing an

integer as an array of digits. Write an interactive program that adds two integers of up to 50 digits each.

2.	 Write a game of Hangman using arrays. Allow the user to guess letters and represent which letters have been

guessed in an array.

3.	 Write a program that plays a variation of the game of Mastermind with a user. For example, the program can use

pseudorandom numbers to generate a four-digit number. The user should be allowed to make guesses until she gets

S S

S

M07_REGE1944_05_SE_C07.indd 532 15/12/18 5:20 AM

Programming Projects� 533

the number correct. Clues should be given to the user indicating how many digits of the guess are correct and in the

correct place and how many digits are correct but in the wrong place.

4.	 Write a program to score users’ responses to the classic Myers–Briggs personality test. Assume that the test has 70

questions that determine a person’s personality in four dimensions. Each question has two answer choices that we’ll

call the “A” and “B” answers. Questions are organized into 10 groups of seven questions, with the following repeat-

ing pattern in each group:

•	 The first question in each group (questions 1, 8, 15, 22, etc.) tells whether the person is introverted or extroverted.

•	 The next two questions (questions 2 and 3, 9 and 10, 16 and 17, 23 and 24, etc.) test whether the person is guided

by his or her senses or intuition.

•	 The next two questions (questions 4 and 5, 11 and 12, 18 and 19, 25 and 26, etc.) test whether the person focuses

on thinking or feeling.

•	 The final two questions in each group (questions 6 and 7, 13 and 14, 20 and 21, 27 and 28, etc.) test whether the

person prefers to judge or be guided by perception.

In other words, if we consider introversion/extraversion (I/E) to be dimension 1, sensing/intuition (S/N) to be

dimension 2, thinking/feeling (T/F) to be dimension 3, and judging/perception (J/P) to be dimension 4, the map of

questions to their respective dimensions would look like this:

1223344122334412233441223344122334412233441223344122334412233441223344

BABAAAABAAAAAAABAAAABBAAAAAABAAAABABAABAAABABABAABAAAAAABAAAAAABAAAAAA

The following is a partial sample input file of names and responses:

Betty Boop

BABAAAABAAAAAAABAAAABBAAAAAABAAAABABAABAAABABABAABAAAAAABAAAAAABAAAAAA

Snoopy

AABBAABBBBBABABAAAAABABBAABBAAAABBBAAABAABAABABAAAABAABBBBAAABBAABABBB

If less than 50% of a person’s responses are B for a given personality dimension, the person’s type for that dimen-

sion should be the first of its two choices. If the person has 50% or more B responses, the person’s type for that

dimension is the second choice. Your program should output each person’s name, the number of A and B responses

for each dimension, the percentage of Bs in each dimension, and the overall personality type. The following should

be your program’s output for the preceding input data:

Betty Boop:

1A–9B 17A–3B 18A–2B 18A–2B

[90%, 15%, 10%, 10%] = ISTJ

Snoopy:

7A–3B 11A–9B 14A–6B 6A–14B

[30%, 45%, 30%, 70%] = ESTP

5.	 Use a two-dimensional array to write a game of Tic-Tac-Toe that represents the board.

6.	 Write a program that reads a file of DNA data and searches for protein sequences. DNA data consists of long

Strings of the letters A, C, G, and T, corresponding to chemical nucleotides called adenine, cytosine, guanine, and

thymine. Proteins can be identified by looking for special triplet sequences of nucleotides that indicate the start and

stop of a protein range. Store relevant data in arrays as you make your computation. See our textbook’s web site for

example DNA input files and more details about heuristics for identifying proteins.

M07_REGE1944_05_SE_C07.indd 533 15/12/18 5:20 AM

534	 Chapter 7  Arrays

7.	 Write a basic Photoshop or Instagram-inspired program with a menu of available image manipulation algorithms

similar to those described in the exercises in this chapter. The user can load an image from a file and then select

which manipulation to perform, such as grayscale, zoom, rotate, or blur.

M07_REGE1944_05_SE_C07.indd 534 15/12/18 5:20 AM

