
Copyright 2010 by Pearson Education

Building Java Programs

Chapter 8

Lecture 8-4: Static Methods and Data



Copyright 2010 by Pearson Education
2

Critter exercise: Snake
Method Behavior

constructor public Snake()

eat Never eats

fight always forfeits

getColor black

getMove 1 E, 1 S; 2 W, 1 S; 3 E, 1 S; 4 W, 1 S; 5 E, ...

toString "S"



Copyright 2010 by Pearson Education
3

Determining necessary fields
� Information required to decide what move to make?

� Direction to go in

� Length of current cycle

� Number of moves made in current cycle

� Remembering things you've done in the past:

� an int counter?

� a boolean flag?



Copyright 2010 by Pearson Education
4

Snake solution
import java.awt.*;    // for Color

public class Snake extends Critter {
private int length;   // # steps in current horizontal cycle
private int step;     // # of cycle's steps already taken

public Snake() {
length = 1;
step = 0;

}

public Direction getMove() {
step++;
if (step > length) {   // cycle was just completed

length++;
step = 0;
return Direction.SOUTH;

} else if (length % 2 == 1) {
return Direction.EAST;

} else {
return Direction.WEST;

}
}

public String toString() {
return "S";

}
}



Copyright 2010 by Pearson Education
5

Critter exercise: Student

� All the students are trying to get to the same party.

� The party is at a randomly-generated board location

(On the 60-by-50 world).

� They stumble north then east until they reach the party.



Copyright 2010 by Pearson Education
6

A flawed solution
import java.util.*;   // for Random

public class Student extends Critter {
private int partyX;
private int partyY;

public Student() {
Random r = new Random();
partyX = r.nextInt(60);
partyY = r.nextInt(50);

}

public Direction getMove() {
if (getY() != partyY) {

return Direction.NORTH;
} else if (getX() != partyX) {

return Direction.EAST;
} else {

return Direction.CENTER;
}

}
}

� Problem: Each student goes to his own party.
We want all students to share the same party location.



Copyright 2010 by Pearson Education
7

Static members

� static: Part of a class, rather than part of an object.

� Object classes can have static methods and fields.

� Not copied into each object; shared by all objects of that class.

class

state:
private static int staticFieldA

private static String staticFieldB

behavior:
public static void someStaticMethodC()

public static void someStaticMethodD()

object #1

state:
int field2
double field2

behavior:
public void method3()
public int method4()
public void method5()

object #2

state:
int field1
double field2

behavior:
public void method3()
public int method4()
public void method5()

object #3

state:
int field1
double field2

behavior:
public void method3()
public int method4()
public void method5()



Copyright 2010 by Pearson Education
8

Static fields
private static type name;

or,

private static type name = value;

� Example:

private static int theAnswer = 42;

� static field: Stored in the class instead of each object.

� A "shared" global field that all objects can access and modify.

� Like a class constant, except that its value can be changed.



Copyright 2010 by Pearson Education
9

Accessing static fields
� From inside the class where the field was declared:

fieldName // get the value

fieldName = value;               // set the value

� From another class (if the field is public):

ClassName.fieldName // get the value

ClassName.fieldName = value;    // set the value

� generally static fields are not public unless they are final

� Exercise: Modify the BankAccount class shown previously 

so that each account is automatically given a unique ID.

� Exercise: Write the working version of Student.



Copyright 2010 by Pearson Education
10

BankAccount solution
public class BankAccount {

// static count of how many accounts are created
// (only one count shared for the whole class)
private static int objectCount = 0;

// fields (replicated for each object)
private String name;

private int id;

public BankAccount() {

objectCount++;     // advance the id, and
id = objectCount;  // give number to account

}

...

public int getID() {   // return this account's id
return id;

}

}



Copyright 2010 by Pearson Education
11

Student solution
import java.util.*;   // for Random

public class Student extends Critter {
// static fields (shared by all students)
private static int partyX = -1;
private static int partyY = -1;

// object constructor/methods (replicated into each object)
public Student() {

if (partyX < 0 || partyY < 0) {
Random r = new Random(); // the 1st one created
partyX = r.nextInt(60); // chooses the party location
partyY = r.nextInt(50); // for all students to go to

}
}

public Direction getMove() {
if (getY() != partyY) {

return Direction.NORTH;
} else if (getX() != partyX) {

return Direction.EAST;
} else {

return Direction.CENTER;
}

}
}



Copyright 2010 by Pearson Education
12

Static methods
// the same syntax you've already used for methods

public static type name(parameters) {
statements;

}

� static method: Stored in a class, not in an object.

� Shared by all objects of the class, not replicated.

� Does not have any implicit parameter, this;  

therefore, cannot access any particular object's fields.

� Exercise: Make it so that clients can find out how many 
total BankAccount objects have ever been created.



Copyright 2010 by Pearson Education
13

BankAccount solution
public class BankAccount {

// static count of how many accounts are created
// (only one count shared for the whole class)
private static int objectCount = 0;

// clients can call this to find out # accounts created
public static int getNumAccounts() {

return objectCount;
}

// fields (replicated for each object)
private String name;
private int id;

public BankAccount() {
objectCount++; // advance the id, and
id = objectCount; // give number to account

}

...

public int getID() {   // return this account's id
return id;

}
}



Copyright 2010 by Pearson Education
14

Advanced exercise
� A party is no fun if it's too crowded.

� Modify Student so that a party will be attended

by no more than 10 students.

� Every 10th student should choose a new party location for 
himself and the next 9 of his friends to be constructed.

� first ten students go to party #1

� next ten students go to party #2

� ...



Copyright 2010 by Pearson Education
15

Advanced solution
import java.util.*;   // for Random

public class Student extends Critter {

// static fields (shared by all objects)
private static int ourPartyX = -1;

private static int ourPartyY = -1;

private static int objectCount = 0;

// chooses the party location for future students to go to
public static void choosePartySpot() {

Random r = new Random();

ourPartyX = r.nextInt(60);

ourPartyY = r.nextInt(50);

}

// object fields/constructor/methods (replicated in each object)
private int myPartyX;

private int myPartyY;

...



Copyright 2010 by Pearson Education
16

Advanced solution 2
...

public Student() {

// every 10th one chooses a new party spot for future students
if (objectCount % 10 == 0) {

choosePartySpot();
}

// must remember his party spot so they aren't all the same
myPartyX = ourPartyX;
myPartyY = ourPartyY;

}

public Direction getMove() {

if (getY() != myPartyY) {
return Direction.NORTH;

} else if (getX() != myPartyX) {
return Direction.EAST;

} else {

return Direction.CENTER;

}

}

}



Copyright 2010 by Pearson Education
17

Multi-class systems
� Most large software systems consist of many classes.

� One main class runs and calls methods of the others.

� Advantages:

� code reuse

� splits up the program logic into manageable chunks

Main Class #1

main

method1

method2

Class #2

method3

method5

Class #3

method4

method6



Copyright 2010 by Pearson Education
18

Redundant program 1
// This program sees whether some interesting numbers are prime.
public class Primes1 {

public static void main(String[] args) {

int[] nums = {1234517, 859501, 53, 142};

for (int i = 0; i < nums.length; i++) {

if (isPrime(nums[i])) {

System.out.println(nums[i] + " is prime");

}

}

}

// Returns the number of factors of the given integer.
public static int countFactors(int number) {

int count = 0;

for (int i = 1; i <= number; i++) {

if (number % i == 0) {

count++;   // i is a factor of the number
}

}

return count;

}

// Returns true if the given number is prime.
public static boolean isPrime(int number) {

return countFactors(number) == 2;

}

}



Copyright 2010 by Pearson Education
19

Redundant program 2
// This program prints all prime numbers up to a maximum.
public class Primes2 {

public static void main(String[] args) {

Scanner console = new Scanner(System.in);

System.out.print("Max number? ");

int max = console.nextInt();

for (int i = 2; i <= max; i++) {

if (isPrime(i)) {

System.out.print(i + " ");

}   }

System.out.println();

}

// Returns true if the given number is prime.
public static boolean isPrime(int number) {

return countFactors(number) == 2;
}

// Returns the number of factors of the given integer.
public static int countFactors(int number) {

int count = 0;
for (int i = 1; i <= number; i++) {

if (number % i == 0) {
count++;   // i is a factor of the number

}   }
return count;

}
}



Copyright 2010 by Pearson Education
20

Classes as modules
� module: A reusable piece of software, stored as a class.

� Example module classes: Math, Arrays, System

// This class is a module that contains useful methods 
// related to factors and prime numbers.
public class Factors {

// Returns the number of factors of the given integer.
public static int countFactors(int number) {

int count = 0;

for (int i = 1; i <= number; i++) {

if (number % i == 0) {

count++;   // i is a factor of the number
}

}

return count;

}

// Returns true if the given number is prime.
public static boolean isPrime(int number) {

return countFactors(number) == 2;

}

}



Copyright 2010 by Pearson Education
21

More about modules
� A module is a partial program, not a complete program.

� It does not have a main.  You don't run it directly.

� Modules are meant to be utilized by other client classes.

� Syntax:

class.method(parameters);

� Example:

int factorsOf24 = Factors.countFactors(24);



Copyright 2010 by Pearson Education
22

Using a module
// This program sees whether some interesting numbers are prime.
public class Primes {

public static void main(String[] args) {
int[] nums = {1234517, 859501, 53, 142};
for (int i = 0; i < nums.length; i++) {

if (Factors.isPrime(nums[i])) {
System.out.println(nums[i] + " is prime");

}
}

}
}

// This program prints all prime numbers up to a given maximum.
public class Primes2 {

public static void main(String[] args) {
Scanner console = new Scanner(System.in);
System.out.print("Max number? ");
int max = console.nextInt();
for (int i = 2; i <= max; i++) {

if (Factors.isPrime(i)) {
System.out.print(i + " ");

}   }
System.out.println();

}
}



Copyright 2010 by Pearson Education
23

Modules in Java libraries
// Java's built in Math class is a module
public class Math {

public static final double PI = 3.14159265358979323846;

...

public static int abs(int a) {
if (a >= 0) {

return a;

} else {

return -a;

}

}

public static double toDegrees(double radians) {
return radians * 180 / PI;

}
}



Copyright 2010 by Pearson Education
24

Summary of Java classes
� A class is used for any of the following in a large program:

� a program : Has a main and perhaps other static methods.

� example: GuessingGame, Birthday, MadLibs, CritterMain

� does not usually declare any static fields (except final)

� an object class : Defines a new type of objects.

� example: Point, BankAccount, Date, Critter, Student

� declares object fields, constructor(s), and methods

� might declare static fields or methods, but these are less of a focus

� should be encapsulated (all fields and static fields private)

� a module : Utility code implemented as static methods.

� example: Math


