
1126 Chapter 19 Functional Programming with Java 8

The question is how to change the computation of the right answer. It would be
great if we could say:

int answer = x text y;

If Java somehow filled in “+” or “*” appropriately and then used the corresponding
operator for the computation, then it would work. But Java doesn’t work this way. The
way that we usually get around this in Java is by introducing an if/else structure that
tests whether the string is a plus or an asterisk. But then the code works for only those
two operators, and additional branches must be added to the code later to make it sup-
port subtraction and other operations.

What we really want is the ability to pass an additional parameter that specifies the
calculation to perform. We want to say, “Use the addition operation the first time and
the multiplication operation the second time.” A functional programmer would say
that what we want to be able to do is to pass in a function. This is an example of what
we mean by elevating functions to first class status in the language. We want to be
able to introduce a fourth parameter that specifies the function to use for computing
the right answer. That requires thinking of the function as a thing in the language that
can be passed as a parameter.

Lambda Expressions

Java 8 provides a nice mechanism for doing exactly that. We can form a lambda
expression.

Lambda Expression (Lambda)

An expression that describes a function by specifying its parameters and the
value that it returns.

The term “lambda” was coined by a logician named Alonzo Church in the 1930s.
The term is used consistently across many programming languages, so it is worth
becoming familiar with it. The Python programming language, for example, uses
“lambda” as a keyword for forming this type of anonymous function.

Lambda expressions are formed in Java by specifying the parameters of the func-
tion and an expression that represents the value to return separated by the special
operator “->”.

<parameters> -> <expression>

For example, we can use the following lambda expression to represent a function
that adds together two arguments:

(int x, int y) -> x + y

Notice that the parameters are enclosed in parentheses. In reading this expression,
we typically describe it as, “Given the parameters x and y of type int, we return x + y.”

M19_REGE1944_05_SE_C19.indd 1126 20/12/18 3:41 PM

19.2 First-Class Functions 1127

We can also write this as a method with a name, as in:

public static int sum(int x, int y) {

 return x + y;

}

Notice how the lambda expression takes the parenthesized parameter list from the
method header and the expression used in the return statement to form a simple ex-
pression. Once you get used to reading lambda expressions, you will find that it is a
concise way to read and reason about the underlying computation being performed.

It is also often possible to eliminate the types for the parameters because they can
usually be inferred by the surrounding context. For our sample code, we will be able to
use this lambda expression to describe addition:

(x, y) -> x + y

And this expression to describe multiplication:

(x, y) -> x * y

Given this new option, we can rewrite our client code as follows to perform 3 each
of addition and multiplication problems.

Scanner console = new Scanner(System.in);

giveProblems(console, 3, "+", (x, y) -> x + y);

giveProblems(console, 3, "*", (x, y) -> x * y);

Below is a sample log of execution.

9 + 1 = 10

you got it right

4 + 4 = 8

you got it right

6 + 2 = 9

incorrect...the answer was 8

2 of 3 correct

10 * 11 = 110

you got it right

9 * 6 = 64

incorrect...the answer was 54

5 * 7 = 45

incorrect...the answer was 35

1 of 3 correct

M19_REGE1944_05_SE_C19.indd 1127 20/12/18 3:41 PM

1128 Chapter 19 Functional Programming with Java 8

This ability to pass a lambda expression as a parameter points out the benefit of
treating functions as first-class elements of the language. Just as we can provide a
different number of problems to perform or a different text to use for displaying the
problems, we can also provide a different function for computing the right answer.
This is a much more flexible approach than having to write tedious if/else con-
structs that say exactly what to do for each different possibility. Instead we provide
a simple definition of the function we want to use and the function is stored in a
 parameter of the method.

It is more important that you learn how to become a client of these functional pro-
gramming features of Java than to learn how to implement them yourself. But for
those who are interested in seeing the implementation, the following is the revised
method code:

public static void giveProblems(Scanner console, int numProblems,

 String text, IntBinaryOperator operator) {

 Random r = new Random();

 int numRight = 0;

 for (int i = 1; i <= numProblems; i++) {

 int x = r.nextInt(12) + 1;

 int y = r.nextInt(12) + 1;

 System.out.print(x + " " + text + " " + y + " = ");

 int answer = operator.applyAsInt(x, y);

 int response = console.nextInt();

 if (response == answer) {

 System.out.println("you got it right");

 numRight++;

 } else {

 System.out.println("incorrect...the answer was " + answer);

 }

 }

 System.out.println(numRight + " of " + numProblems + " correct");

 System.out.println();

}

There are other variations on lambda expression syntax. For example, if a lambda
expression accepts only a single parameter, the parentheses around it are not re-
quired. The following is a lambda expression that accepts an integer and returns that
integer plus 1:

n -> n + 1

Another syntax variation is that if the computation is not a simple expression, you
can include multiple statements enclosed in curly braces, such as:

x -> { int z = x * x; System.out.println(z); return z; }

M19_REGE1944_05_SE_C19.indd 1128 20/12/18 3:41 PM

19.3 Streams 1129

Our discussion of first-class functions is a little generous to Java because it turns
out that functions in Java 8 are not truly first-class. The language designers have done
some fancy work behind the scenes to make it feel like Java has first-class functions,
but they aren’t really first-class because you can’t do basic things like storing them
directly in a variable. Instead Java takes advantage of interfaces that have a single
abstract method in them (known as functional interfaces) and constructs an object for
you that implements the interface’s method using the elements of the lambda expres-
sion. As a result, Java’s implementation of functional programming is more clunky
and restrictive than in a true functional programming language. But for our purposes,
the lambda expressions and functional interfaces act enough like first-class functions
that we can explore the concept, even though it is a bit of an illusion.

You can try out lambdas in JShell, but the syntax is a bit clunky compared to some
other programming languages. The following JShell interaction creates a lambda
function called f and calls it on two integers:

jshell> IntBinaryOperator f = (x, y) -> x + y;

f ==> $Lambda$14/1551870003@39aeed2f

jshell> f.applyAsInt(6, 2)

$2 ==> 8

19.3 Streams

You don’t truly appreciate the benefits of functional programming in Java until you
explore streams, which are the primary mechanism that Java provides for this style of
programming. We have seen this concept before when we studied files in Chapter 6.
We saw input streams that are a source of data and output streams that are a destina-
tion for results. The streams in this chapter are a generalization of that idea. Oracle
describes a Java stream as a sequence of elements of data on which various functional
programming operations can be performed.

Stream

A sequence of elements from a data source that supports aggregate
operations.

Basic Idea

The best way to think about a stream is to visualize it as a flow of data from a source to
a terminator with possible modifiers in between, as shown in Figure 19.1.

source stream1 stream2 ...modifier terminator

Figure 19.1 Streams

M19_REGE1944_05_SE_C19.indd 1129 20/12/18 3:41 PM

1130 Chapter 19 Functional Programming with Java 8

There is always one source and one terminator, but there can be any number of
modifiers (including none) in between. As the diagram indicates, think of each modifier
as transforming the stream in some way. One sequence of values flows in and a different
sequence of values flows out. This way, we solve a complex programming task by identi-
fying the source of the data to process, the final result we want to compute, and a series of
transformations in between that move us closer to completing the task. Each of the modi-
fiers will be specified by a function, which means that we are decomposing the overall task
into a series of subtasks that each involve a single transformation specified by a function.

As a first example, suppose we want to find the sum of the squares of the integers 1
through 5. We could use a classic cumulative sum to accomplish this:

// compute the sum of the squares of integers 1-5

int sum = 0;

for (int i = 1; i <= 5; i++) {

 sum = sum + i * i;

}

This code specifies exactly how to perform this computation, using a loop variable
called i that varies from 1 to 5 and accumulating the final answer in a variable called
sum. You will see that when we use streams, we describe more what we want com-
puted instead of specifying how to compute it. This can make the coding itself simpler,
but more importantly, it gives the computer more flexibility to decide how to imple-
ment the computation. As we will see in the case study at the end of this chapter, this
can allow the computer to optimize the solution to run faster.

Using a stream approach, we first have to identify a source of data. We don’t have
a convenient source for the squares of the positive integers, but there is a static method
called IntStream.range that produces a stream of sequential integers in a particular
range. As with the substring method of the String class, the range method has a
first parameter that is inclusive and a second parameter that is exclusive. So we will
make the call IntStream.range(1, 6) to produce a stream with the integers [1, 2,
3, 4, 5]. There is a variation of the method called rangeClosed that would allow us to
pass (1, 5) as parameters, but the range method uses the same convention we have
studied in Java for substrings and it is also more commonly used in other program-
ming languages. Python, for example, has a range function that works the same way.

We also need to pick an appropriate terminator. In this case Java provides one for
us in the form of a method called sum that adds up the values in a stream of numbers.
For now, let’s just add up the integers and store the result in a variable. So we would
write this line of code:

int sum = IntStream.range(1, 6).sum();

This sets the variable sum to 15 (1 + 2 + 3 + 4 + 5). In this case, we have the re-
quired source of data and the required terminator, but there are no modifications along
the way. Figure 19.2 shows a diagram of what is going on.

M19_REGE1944_05_SE_C19.indd 1130 20/12/18 3:41 PM

19.3 Streams 1131

IntStream.range(1, 6) -> [1, 2, 3, 4, 5] -> sum -> 15

Figure 19.2 Stream operations on range of integers

In our computation, the initial call to IntStream.range is the source, and sum is the
terminator. The call on range produces a stream of five integers. This stream is fed into
the sum method, which adds them up to produce the final result of 15. But recall that we
want the sum of the first five squares, not the first five integers. We can accomplish that
by introducing a modifier in between the range creation and the sum operation.

You can see optional values in JShell. It displays that the result is optional, along
with its value, if any. If you want to split up long lines with multiple stream opera-
tions, you have to type the dot character before you press Enter for JShell to know you
haven’t finished writing the stream expression yet:

jshell> IntStream.of(55, 20, 19, 31, 40, -2, 62, 30).

 ...> filter(n -> n % 10 == 0).

 ...> max()

$1 ==> OptionalInt[40]

jshell> $1.getAsInt()

40

Using Map
Stream objects have a method called map that takes a function as a parameter. We
can provide a function that squares a number. What map does is to produce a new
stream that has the result of applying the given function to each element of the original
stream. So if the original stream had five numbers, then the new stream will also have
five numbers, but they will be new numbers obtained by calling the function passed as
a parameter on each of the five elements in the stream. So our line of code becomes:

int sum = IntStream.range(1, 6).map(n -> n * n).sum();

There is a convention popular among Java programmers to list each step of this
operation on a different line of code. The first line of code should have the source and
the final line should have the terminator and any modifications should be listed as
separate lines in between. So the code above becomes:

int sum = IntStream.range(1, 6)

 .map(n -> n * n)

 .sum();

This is just a formatting convention to make it easier to read the code. We would
read this in a high-level way as, “To assign the variable sum, first form the given range
of integers, then map the given function over those integers, and then find their sum.”

M19_REGE1944_05_SE_C19.indd 1131 20/12/18 3:41 PM

