
Introduction

The sequential nature of files severely limits the number of interesting
things that you can do easily with them. The algorithms we have examined
so far have all been sequential algorithms: algorithms that can be per-
formed by examining each data item once, in sequence. An entirely differ-
ent class of algorithms can be performed when you can access the data
items multiple times and in an arbitrary order.

This chapter examines a new object called an array that provides this
more flexible kind of access. The concept of arrays is not complex, but it
can take a while for a novice to learn all of the different ways that an array
can be used. The chapter begins with a general discussion of arrays and
then moves into a discussion of common array manipulations as well as
advanced array techniques. The chapter also includes a discussion of special
rules known as reference semantics that apply only to objects like arrays
and strings.

Chapter 7

7.1 Array Basics

� Constructing and Traversing
an Array

� Accessing an Array
� A Complete Array Program
� Random Access
� Arrays and Methods
� The For-Each Loop
� Initializing Arrays
� The Arrays Class

7.2 Array-Traversal Algorithms

� Printing an Array
� Searching and Replacing
� Testing for Equality
� Reversing an Array
� String Traversal Algorithms

7.3 Reference Semantics

� Multiple Objects

7.4 Advanced Array Techniques

� Shifting Values in an Array
� Arrays of Objects
� Command-Line Arguments
� Nested Loop Algorithms

7.5 Multidimensional Arrays

� Rectangular Two-Dimensional
Arrays

� Jagged Arrays

7.6 Case Study: Benford’s Law

� Tallying Values
� Completing the Program

439

Arrays

M07_REGE0905_03_SE_C07.qxd 1/21/13 7:50 PM Page 439

440 Chapter 7 Arrays

7.1 Array Basics

An array is a flexible structure for storing a sequence of values that are all of the
same type.

Array

An indexed structure that holds multiple values of the same type.

The values stored in an array are called elements. The individual elements are
accessed using an integer index.

Index

An integer indicating the position of a particular value in a data structure.

As an analogy, consider post office boxes. The boxes are indexed with numbers, so
you can refer to an individual box by using a description like “P.O. Box 884.” You
already have experience using an index to indicate positions within a String; recall
the methods charAt and substring. Like String indexes, array indexes start with 0.
This is a convention known as zero-based indexing.

Zero-Based Indexing

A numbering scheme used throughout Java in which a sequence of values
is indexed starting with 0 (element 0, element 1, element 2, and so on).

It might seem more natural to start indexes with 1 instead of 0, but Java uses the
same indexing scheme that is used in C and C++.

Constructing and Traversing an Array

Suppose you want to store some different temperature readings. You could keep them
in a series of variables:

double temperature1;

double temperature2;

double temperature3;

This isn’t a bad solution if you have just 3 temperatures, but suppose you need to
store 3000 temperatures. Then you would want a more flexible way to store the values.
You can instead store the temperatures in an array.

When you use an array, you first need to declare a variable for it, so you have to
know what type to use. The type will depend on the type of elements you want to
have in your array. To indicate that you are creating an array, follow the type name
with a set of square brackets: []. If you are storing temperature values, you want a

M07_REGE0905_03_SE_C07.qxd 1/17/13 6:59 PM Page 440

