
Introduction

The sequential nature of files severely limits the number of interesting
things you can easily do with them.The algorithms we have examined so far
have all been sequential algorithms: algorithms that can be performed by
examining each data item once, in sequence.There is an entirely different
class of algorithms that can be performed when you can access the data
items multiple times and in an arbitrary order.

This chapter examines a new object called an array that provides this more
flexible kind of access.The concept of arrays is not complex, but it can take
a while for a novice to learn all of the different ways that an array can be
used. The chapter begins with a general discussion of arrays and then
moves into a discussion of common array manipulations as well as
advanced array techniques.

Chapter 7

Arrays

7.1 Array Basics

� Constructing and Traversing
an Array

� Accessing an Array
� A Complete Array Program
� Random Access
� Arrays and Methods
� The For-Each Loop
� Initializing Arrays
� Limitations of Arrays

7.2 Array-Traversal
Algorithms

� Printing an Array
� Searching and Replacing
� Testing for Equality
� Reversing an Array

7.3 Advanced Array
Techniques

� Shifting Values in an Array
� Arrays of Objects
� Command-Line Arguments

7.4 Multidimensional Arrays
(Optional)

� Rectangular Two-
Dimensional Arrays

� Jagged Arrays

7.5 Case Study: Hours
Worked

� Version 1: Reading the Input
File

� Version 2: Cumulative Sum
� Version 3: Row Sum and

Column Print

375

CH07 p375-436 1/30/07 1:02 PM Page 375

376 Chapter 7 Arrays

7.1 Array Basics

An array is a flexible structure for storing a sequence of values all of the same type.

Array

A structure that holds multiple values of the same type.

The values stored in an array are called elements. The individual elements are
accessed using an integer index.

Index

An integer indicating the position of a value in a data structure.

As an analogy, consider post office boxes. The boxes are indexed with numbers, so
you can refer to an individual box by using a description like “PO Box 884.” You
already have experience using an index to indicate positions within a String, when
calling methods like charAt or substring. As was the case with String indexes,
array indexes start with 0. This is a convention known as zero-based indexing.

Zero-Based Indexing

A numbering scheme used throughout Java in which a sequence of values
is indexed starting with 0 (element 0, element 1, element 2, and so on).

It might seem more natural to have indexes that start with 1 instead of 0, but Sun
decided that Java would use the same indexing scheme that is used in C and C++.

Constructing and Traversing an Array

Suppose you want to store some different temperature readings. You could keep them
in a series of variables:

double temperature1;
double temperature2;
double temperature3;

This isn’t a bad solution if you have just 3 temperatures, but suppose you need to
store 3000 temperatures. Then you would want something more flexible. You can
instead store the temperatures in an array.

When using an array, you first need to declare a variable for it, so you have to
know what type to use. The type will depend on the type of elements you want to
have in your array. To indicate that you want an array, follow the type name with a set
of square brackets. For temperatures, you want a sequence of values of type double,
so you use the type double[]. Thus, you can declare a variable for storing your array
as follows:

double[] temperature;

CH07 p375-436 1/30/07 1:02 PM Page 376

Arrays are objects, which means they must be constructed. Simply declaring a
variable isn’t enough to bring the object into existence. In this case you want an array
of three double values, which you can construct as follows:

double[] temperature = new double[3];

This is a slightly different syntax than you’ve used previously when asking for a
new object. It is a special syntax for arrays only. Notice that on the left-hand side you
don’t put anything inside the square brackets, because you’re describing a type. The
variable temperature can refer to any array of double values, no matter how many
elements it has. On the right-hand side, however, you have to mention a specific
number of elements because you are asking Java to construct an actual array object
and it needs to know how many elements to include.

The general syntax for declaring and constructing an array is as follows:

<element type>[] <name> = new <element type>[<size>];

You can use any type as the element type, although the left and right sides of this
statement have to match. For example, any of the following would be legal ways to
construct an array:

int[] numbers = new int[10]; // an array of 10 ints
char[] letters = new char[20]; // an array of 20 chars
boolean[] flags = new boolean[5]; // an array of 5 booleans
String[] names = new String[100]; // an array of 100 Strings
Point[] points = new Point[50]; // an array of 50 Points

There are some special rules that apply when you construct an array of objects such as
an array of Strings or an array of Points, but we’ll discuss those later in the chapter.

In executing the line of code to construct the array of temperatures, Java will construct
an array of three double values, with the variable temperature referring to the array:

7.1 Array Basics 377

temperature 30.0

[0]

30.0

[1]

30.0

[2]

As you can see, the variable temperature is not itself the array. Instead, it stores
a reference to the array. The array indexes are indicated in square brackets. To refer to
an individual element of the array, you combine the name of the variable that refers
to the array (temperature) with a specific index ([0], [1], or [2]). So, there is an
element known as temperature[0], an element known as temperature[1], and an
element known as temperature[2].

In the temperature array diagram, the array elements are each indicated as hav-
ing the value 0.0. This is a guaranteed outcome when an array is constructed. Each
element is initialized to a default value, a process known as auto-initialization.

Auto-Initialization

The initialization of variables to a default value, as in the initialization of
array elements when an array is constructed.

CH07 p375-436 1/30/07 1:02 PM Page 377

378 Chapter 7 Arrays

temperature 374.3

[0]

368.4

[1]

370.3

[2]

temperature 30.0

[0]

30.0

[1]

30.0

[2]

30.0

[3]

30.0

[4]

3...

[...]

30.0

[99]

TABLE 7.1 Zero-Equivalent
Auto-Initialization Values

Type Value

int 0

double 0.0

char '\0'

boolean false

objects null

When Java performs auto-initialization, it always initializes to the zero-equivalent
for the type. Table 7.1 indicates the zero-equivalent values for various types. Notice
that the zero-equivalent for type double is 0.0, which is why the array elements
were initialized to that value. Using the indexes, you can store the specific tempera-
ture values you want to work with:

temperature[0] = 74.3;
temperature[1] = 68.4;
temperature[2] = 70.3;

This code modifies the array to have the following values:

Obviously an array isn’t particularly helpful when you have just three values to
store, but you can request a much larger array. For example, you could request an
array of 100 temperatures by saying:

double[] temperature = new double[100];

This is almost the same line of code you executed before. The variable is still
declared to be of type double[], but in constructing the array you request 100 ele-
ments instead of 3, which constructs a much larger array:

Notice that the highest index is 99 rather than 100 because of zero-based indexing.
You are not restricted to simple literal values inside the brackets. You can use any

integer expression. This allows you to combine arrays with loops, which greatly sim-
plifies the code you write. For example, suppose you want to read a series of temper-
atures from a Scanner. You could read each value individually, as in:

CH07 p375-436 1/30/07 1:02 PM Page 378

7.1 Array Basics 379

temperature[0] = input.nextDouble();
temperature[1] = input.nextDouble();
temperature[2] = input.nextDouble();
. . .
temperature[99] = input.nextDouble();

But since the only thing that changes from one statement to the next is the index,
you can capture this pattern in a for loop with a control variable that takes on the
values 0 to 99:

for (int i = 0; i < 100; i++) {
temperature[i] = input.nextDouble();

}

This is a very concise way to initialize all the elements of the array. The preceding
code works when the array has a length of 100, but you can imagine the array having
a different length. Java provides a useful mechanism for making this code more gen-
eral. Each array keeps track of its own length. You’re using the variable temperature
to refer to your array, which means you can ask for temperature.length to find out
the length of the array. By using temperature.length in the for loop test instead
of the specific value 100, you make your code more general:

for (int i = 0; i < temperature.length; i++) {
temperature[i] = input.nextDouble();

}

Notice that the array convention is different from the String convention. If you
have a String variable s, you ask for the length of the String by referring to
s.length(). For an array variable, you don’t include the parentheses after the word
“length.” This is another one of those unfortunate inconsistencies that Java program-
mers just have to memorize.

The previous code provides a pattern that you will see often with array-processing
code: a for loop that starts at 0 and that continues while the loop variable is less
than the length of the array, doing something with element [i] in the body of the
loop. This goes through each array element sequentially, which we refer to as
traversing the array.

Array Traversal

Processing each array element sequentially from the first to the last.

This pattern is so useful that it is worth including it in a more general form:

for (int i = 0; i < <array>.length; i++) {
<do something with array [i]>;

}

We will see this traversal pattern repeatedly as we explore common array algorithms.

CH07 p375-436 1/30/07 1:02 PM Page 379

380 Chapter 7 Arrays

list 30

[0]

30

[1]

30

[2]

30

[3]

0

[4]

list 31

[0]

33

[1]

35

[2]

37

[3]

39

[4]

Accessing an Array

As discussed in the last section, we refer to array elements by combining the name of
the variable that refers to the array with an integer index inside square brackets:

<array variable>[<integer expression>]

Notice in this syntax description that the index can be an arbitrary integer expres-
sion. To explore this, let’s see how we would access particular values in an array of
integers. Suppose that we construct an array of length 5 and fill it up with the first
five odd integers:

int[] list = new int[5];
for (int i = 0; i < list.length; i++) {

list[i] = 2 * i + 1;
}

The first line of code declares a variable list of type int[] and has it refer to an
array of length 5. The array elements are auto-initialized to 0:

Then the code uses the standard traversing loop to fill in the array with successive
odd numbers:

Suppose we want to report the first, middle, and last values in the list. Looking at
the preceding diagram, we can see that they occur at indexes 0, 2, and 4, which
means we could write the following code:

// works only for an array of length 5
System.out.println("first = " + list[0]);
System.out.println("middle = " + list[2]);
System.out.println("last = " + list[4]);

This works when the array is of length 5, but suppose that we change the length of
the array. If the array has a length of 10, for example, this code will report the wrong
values. We need to modify it to incorporate list.length, just as when writing the
standard traversing loop.

The first element of the array will always be at index 0, so the first line of code
doesn’t need to change. You might at first think that we could fix the third line of
code by replacing the 4 with list.length:

// doesn't work
System.out.println("last = " + list[list.length]);

However, this code doesn’t work. The culprit is zero-based indexing. In our exam-
ple, the last value is stored at index 4 when list.length is 5. More generally, the

CH07 p375-436 1/30/07 1:02 PM Page 380

7.1 Array Basics 381

last value will be at index list.length – 1. We can use this expression directly in
our println statement:

// this one works
System.out.println("last = " + list[list.length � 1]);

Notice that what appears inside the square brackets is an integer expression (the
result of subtracting 1 from list.length).

A simple approach to finding the middle value is to divide the length in half:

// is this right?
System.out.println("middle = " + list[list.length / 2]);

When list.length is 5, this expression evaluates to 2, which prints the correct
value. But what about when list.length is 10? In that case the expression evalu-
ates to 5, and we would print list[5]. But when the list has even length, there are
actually two values in the middle, so it is not clear which one should be returned. For
a list of length 10, the two values would be at list[4] and list[5]. In general, the
preceding expression would always return the second of the two values in the middle
for a list of even length.

If we wanted to instead get the first of the two values in the middle, we could sub-
tract one from the length before dividing by two. Here is a complete set of println
statements that follows this approach:

System.out.println("first = " + list[0]);
System.out.println("middle = " + list[(list.length � 1) / 2]);
System.out.println("last = " + list[list.length � 1]);

As you learn how to use arrays, you will find yourself wondering what exactly you
can do with an array element that you are accessing. For example, with the array of
integers called list, what exactly can you do with list[i]? The answer is that you
can do anything with list[i] that you would normally do with any variable of type
int. For example, if you have a variable called x of type int, you know that you can
say any of the following:

x = 3;
x++;
x *= 2;
x��;

That means that you can say the same things for list[i] if list is an array
of integers:

list[i] = 3;
list[i]++;
list[i] *= 2;
list[i]��;

From Java’s point of view, because list is declared to be of type int[], an array
element like list[i] is of type int and can be manipulated as such. For example, to
increment every value in the array, you could use the standard traversing loop as follows:

CH07 p375-436 1/30/07 1:02 PM Page 381

382 Chapter 7 Arrays

31

[0]

33

[1]

35

[2]

37

[3]

39

[4]

legal indexes 0– 4index less than 0
out of bounds

index 5 or more
out of bounds

for (int i = 0; i < list.length; i++) {
list[i]++;

}

This code would increment each value in the array, turning the array of odd num-
bers into an array of even numbers.

It is possible to refer to an illegal index of an array, in which case Java throws an
exception. For example, for an array of length 5, the legal indexes are from 0 to 4.
Any number less than 0 or greater than 4 is outside the bounds of the array:

With this sample array, if you attempt to refer to list[-1] or list[5],
you are attempting to access an array element that does not exist. If your
code makes such an illegal reference, Java will halt your program with an
ArrayIndexOutOfBoundsException.

A Complete Array Program

Let’s look at a program where an array allows you to solve a problem you couldn’t
solve before. If you tune in to any local news broadcast at night, you’ll hear them
report the high temperature for that day. It is usually reported as an integer, as in, “It
got up to 78 today.”

Suppose you want to examine a series of high temperatures, compute the average
temperature, and count how many days were above average in temperature. You’ve
been using Scanners to solve problems like this, and you can almost solve the prob-
lem that way. If you just wanted to know the average, you could use a Scanner and
write a cumulative sum loop to find it:

1 // Reads a series of high temperatures and reports the average.
2
3 import java.util.*;
4
5 public class Temperature1 {
6 public static void main(String[] args) {
7 Scanner console = new Scanner(System.in);
8 System.out.print("How many days' temperatures? ");
9 int numDays = console.nextInt();
10 int sum = 0;
11 for (int i = 1; i <= numDays; i++) {
12 System.out.print("Day " + i + "'s high temp: ");
13 int next = console.nextInt();
14 sum += next;
15 }
16 double average = (double) sum / numDays;
17 System.out.println();
18 System.out.println("Average = " + average);
19 }
20 }

CH07 p375-436 1/30/07 1:02 PM Page 382

7.1 Array Basics 383

Did You Know?

Buffer Overruns

One of the earliest and still most common sources of computer security problems
is a buffer overrun (also known as a buffer overflow). A buffer overrun is similar
to an array index out of bounds exception. It occurs when a program writes data
beyond the bounds of the buffer set aside for that data.

For example, you might have space allocated for the 12-character String
“James T Kirk”:

Suppose that you tell the computer to overwrite this buffer with the String
“Jean Luc Picard”. There are 15 letters in Picard’s name, so if you write all of those
characters into the buffer, you “overrun” it by writing three extra characters:

The last three letters of Picard’s name (“ard”) are being written to a part of
memory that is beyond the end of the buffer. This is a very dangerous situation,
because it will overwrite any data that is already there. This would be like a fel-
low student grabbing three sheets of paper from you and erasing anything you
had written on them. You are likely to have useful information written on those
sheets of paper, so the overrun is likely to cause a problem.

When a buffer overrun happens accidentally, the program usually halts with
some kind of error condition. However, buffer overruns are particularly danger-
ous when they are done on purpose by a malicious program. If the attacker can
figure out just the right memory location to overwrite, the attacking software can
take over your computer and instruct it to do things you haven’t asked it to do.

Three of the most famous internet worms were built on buffer overruns: the
1988 Morris worm, the 2001 Code Red worm, and the 2003 SQLSlammer worm.

Buffer overruns are often written as array code. You might wonder how such a
malicious program could be written if the computer checks the bounds when you
access an array. The answer is that older programming languages like C and C++
do not check bounds when you access an array. By the time Java was designed in
the early 1990s, the danger of buffer overruns was clear and the designers of the
language decided to include array-bounds checking so that Java would be more
secure. Microsoft included similar bounds checking when it designed the lan-
guage C# in the late 1990s.

3 3L 3u 33J 3e 3a 3n 3 3P 3i 3c 3a 3r 3dc

12-character buffer overrun

3s 3 3T 33J 3a 3m 3e 3K 3i 3r 3k

12-character buffer

CH07 p375-436 1/30/07 1:02 PM Page 383

384 Chapter 7 Arrays

This program does a pretty good job. Here is a sample execution:

How many days' temperatures? 5
Day 1's high temp: 78
Day 2's high temp: 81
Day 3's high temp: 75
Day 4's high temp: 79
Day 5's high temp: 71

Average = 76.8

But how do you count how many days were above average? You could try to
incorporate it into the loop, but that won’t work. The problem is that you can’t figure
out the average until you’ve gone through all of the data. That means you’ll need to
make a second pass through the data to figure out how many days were above aver-
age. You can’t do that with a Scanner, because a Scanner has no “reset” option that
allows you to see the data a second time. You’d have to prompt the user to enter the
temperature data a second time, which would be silly.

Fortunately, you can solve the problem with an array. As you read numbers in and
compute the cumulative sum, you can fill up an array that stores the temperatures.
Then you can use the array to make the second pass through the data.

In the previous temperature example you used an array of double values, but here
you want an array of int values. So, instead of declaring a variable of type double[],
declare a variable of type int[]. You’re asking the user how many days of temperature
data to include, so you can construct the array right after you’ve read that information:

int numDays = console.nextInt();
int[] temps = new int[numDays];

The old loop looks like this:

for (int i = 1; i <= numDays; i++) {
System.out.print("Day " + i + "'s high temp: ");
int next = console.nextInt();
sum += next;

}

Because you’re using an array, you’ll want to change this to a loop that starts at 0
to match the array indexing. But just because you’re using zero-based indexing inside
the program doesn’t mean that you have to confuse the user by asking for “Day 0’s
high temp.” You can modify the println to prompt for day (i + 1). Furthermore,
you no longer need the variable next because you’ll be storing the values in the array
instead. So, the loop code becomes:

for (int i = 0; i < numDays; i++) {
System.out.print("Day " + (i + 1) + "'s high temp: ");
temps[i] = console.nextInt();
sum += temps[i];

}

CH07 p375-436 1/30/07 1:02 PM Page 384

7.1 Array Basics 385

Notice that you’re now testing whether the index is strictly less than numDays. After
this loop executes, you compute the average as we did before. Then you can write a new
loop that counts how many days were above average using our standard traversing loop:

int above = 0;
for (int i = 0; i < temps.length; i++) {

if (temps[i] > average) {
above++;

}
}

In this loop the test involves temps.length. You could instead have tested
whether the variable is less than numDays; either choice works in this program
because they should be equal to each other.

If you put these various code fragments together and include code to report the
number of days above average, you get the following complete program:

1 // Reads a series of high temperatures and reports the
2 // average and the number of days above average.
3
4 import java.util.*;
5
6 public class Temperature2 {
7 public static void main(String[] args) {
8 Scanner console = new Scanner(System.in);
9 System.out.print("How many days' temperatures? ");
10 int numDays = console.nextInt();
11 int[] temps = new int[numDays];
12
13 // record temperatures and find average
14 int sum = 0;
15 for (int i = 0; i < numDays; i++) {
16 System.out.print("Day " + (i + 1)
17 + "'s high temp: ");
18 temps[i] = console.nextInt();
19 sum += temps[i];
20 }
21 double average = (double) sum / numDays;
22
23 // count days above average
24 int above = 0;
25 for (int i = 0; i < temps.length; i++) {
26 if (temps[i] > average) {
27 above++;
28 }
29 }
30
31 // report results
32 System.out.println();
33 System.out.println("Average = " + average);
34 System.out.println(above + " days above average");
35 }
36 }

CH07 p375-436 1/30/07 1:02 PM Page 385

Here is a sample execution:

How many days' temperatures? 9
Day 1's high temp: 75
Day 2's high temp: 78
Day 3's high temp: 85
Day 4's high temp: 71
Day 5's high temp: 69
Day 6's high temp: 82
Day 7's high temp: 74
Day 8's high temp: 80
Day 9's high temp: 87

Average = 77.88888888888889
5 days above average

Random Access

Most of the algorithms we have seen so for have involved sequential access.

Sequential Access

Manipulating values in a sequential manner from first to last.

A Scanner object is often all you need for a sequential algorithm, because it
allows you to access data in a forward manner from first to last. But as we have
seen, there is no way to reset a Scanner back to the beginning. The sample program
we just looked at uses an array to allow a second pass through the data, but even this
is fundamentally a sequential approach because it involves two forward passes
through the data.

An array is a powerful data structure that allows a more sophisticated kind of
access known as random access:

Random Access

Manipulating values in any order whatsoever with quick access to each
value.

An array can provide random access because it is allocated as a contiguous block
of memory. The computer can quickly compute exactly where a particular value will
be stored, because it knows how much space each element takes up in memory and it
knows that they are all allocated right next to each other in the array.

Let’s explore a problem where random access is important. Suppose that a teacher
gives quizzes that are scored on a scale of 0 to 4 and the teacher wants to know the
distribution of quiz scores. In other words, the teacher wants to know how many
scores of 0 there are, how many scores of 1, how many scores of 2, how many scores
of 3, and how many scores of 4. Suppose that the teacher has included all of the
scores in a data file like the following:

1 4 1 0 3 2 1 4 2 0
3 0 2 3 0 4 3 3 4 1
2 4 1 3 1 4 3 3 2 4
2 3 0 4 1 4 4 1 4 1

386 Chapter 7 Arrays

CH07 p375-436 1/30/07 1:02 PM Page 386

7.1 Array Basics 387

Common Programming Error:

Off-by-One Bug

In converting the Temperature1 program to one that uses an array, you modified
the for loop to start with an index of 0 instead of 1. The original for loop was
written this way:

for (int i = 1; i <= numDays; i++) {
System.out.print("Day " + i + "'s high temp: ");
int next = console.nextInt();
sum += next;

}

Because you were storing the values into an array rather than reading them into
a variable called next, you replaced next with temps[i]:

// wrong loop bounds
for (int i = 1; i <= numDays; i++) {

System.out.print("Day " + i + "'s high temp: ");
temps[i] = console.nextInt();
sum += temps[i];

}

Because the array is indexed starting at 0, you changed the bounds of the for
loop to start at 0 and adjusted the print statement. Suppose those were the only
changes you made:

// still wrong loop bounds
for (int i = 0; i <= numDays; i++) {

System.out.print("Day " + (i + 1) + "'s high temp: ");
temps[i] = console.nextInt();
sum += temps[i];

}

This loop generates an error when you run it. It asks for an extra day’s worth of
data and then throws an exception, as in the following sample execution:

How many days' temperatures? 5
Day 1's high temp: 82
Day 2's high temp: 80
Day 3's high temp: 79
Day 4's high temp: 71
Day 5's high temp: 75
Day 6's high temp: 83
Exception in thread "main"

java.lang.ArrayIndexOutOfBoundsException: 5
at Temperature2.main(Temperature2.java:18)

The problem is that if you’re going to start the for loop variable at 0, you need
to test for it being strictly less than the number of iterations you want. You

CH07 p375-436 1/30/07 1:02 PM Page 387

388 Chapter 7 Arrays

count 30

[0]

30

[1]

30

[2]

30

[3]

30

[4]

The teacher could hand-count the scores, but it would be much easier to use a
computer to do the counting. How can you solve the problem? First you have to rec-
ognize that you are doing five separate counting tasks: You are counting the occur-
rences of the number 0, the number 1, the number 2, the number 3, and the number 4.
You will need five counters to solve this problem, which means that an array is a
great way to store the data. In general, whenever you find yourself thinking that you
need n of some kind of data, you should think about using an array of length n.

Each counter will be an int, so you want an array of five int values:

int[] count = new int[5];

This will allocate the array of five integers and will auto-initialize each to 0:

You’re reading from a file, so you’ll need a Scanner and a loop that reads scores
until there are no more scores to read:

Scanner input = new Scanner(new File("tally.dat"));
while (input.hasNextInt()) {

int next = input.nextInt();
// process next

}

To complete this code, you need to figure out how to process each value. You
know that next will be one of five different values: 0, 1, 2, 3, or 4. If it is 0 you want
to increment the counter for 0, which is count[0], if it is 1, you want to increment
the counter for 1, which is count[1], and so on. We have been solving problems like
this one with nested if/else statements:

changed the 1 to a 0 but left the <= test. As a result, the loop is performing an extra
iteration and trying to make a reference to an array element temps[5] that doesn’t
exist.

This is a classic off-by-one error. The fix is to change the loop bounds to use a
strictly less-than test:

// correct bounds
for (int i = 0; i < numDays; i++) {

System.out.print("Day " + (i + 1) + "'s high temp: ");
temps[i] = console.nextInt();
sum += temps[i];

}

CH07 p375-436 1/30/07 1:02 PM Page 388

7.1 Array Basics 389

count 30

[0]

30

[1]

30

[2]

30

[3]

30

[4]

count 30

[0]

31

[1]

30

[2]

30

[3]

30

[4]

count 30

[0]

31

[1]

30

[2]

30

[3]

31

[4]

count 30

[0]

32

[1]

30

[2]

30

[3]

31

[4]

if (next == 0) {
count[0]++;

} else if (next == 1) {
count[1]++;

} else if (next == 2) {
count[2]++;

} else if (next == 3) {
count[3]++;

} else { // next == 4
count[4]++;

}

But with an array, you can solve this problem much more directly:

count[next]++;

This line of code is so short compared to the nested if/else construct that you
might not realize at first that it does the same thing. Let’s simulate exactly what hap-
pens as various values are read from the file.

When the array is constructed, all of the counters are initialized to 0:

The first value in the input file is a 1, so the program reads that into next. Then it
executes this line of code:

count[next]++;

Because next is 1, this becomes:

count[1]++;

So the counter at index [1] is incremented:

Then a 4 is read from the input file, which means count[4] is incremented:

Next, another 1 is read from the input file, which increments count[1]:

Then a 0 is read from the input file, which increments count[0]:

count 31

[0]

32

[1]

30

[2]

30

[3]

31

[4]

CH07 p375-436 1/30/07 1:02 PM Page 389

390 Chapter 7 Arrays

count 35

[0]

39

[1]

36

[2]

39

[3]

311

[4]

Notice that in just this short set of data you’ve jumped from index 1 to index 4,
then back down to index 1, then to index 0. The program continues executing in this
manner, jumping from counter to counter as it reads values from the file. This ability
to jump around in the data structure is what’s meant by random access.

After processing all of the data, the array ends up looking like this:

After this loop finishes executing, you can report the total for each score by using
the standard traversing loop with a println:

for (int i = 0; i < count.length; i++) {
System.out.println(i + "\t" + count[i]);

}

If you put this all together and add a header for the output, you get the following
complete program:

1 // Reads a series of values and reports the frequency of
2 // occurrence of each value.
3
4 import java.io.*;
5 import java.util.*;
6
7 public class Tally {
8 public static void main(String[] args)
9 throws FileNotFoundException {
10 Scanner input = new Scanner(new File("tally.dat"));
11 int[] count = new int[5];
12 while (input.hasNextInt()) {
13 int next = input.nextInt();
14 count[next]++;
15 }
16 System.out.println("Value\tOccurrences");
17 for (int i = 0; i < count.length; i++) {
18 System.out.println(i + "\t" + count[i]);
19 }
20 }
21 }

Given the sample input file shown earlier, it produces the following output:

Value Occurrences
0 5
1 9
2 6
3 9
4 11

It is important to realize that a program written with an array is much more flexi-
ble than programs written with simple variables and if/else statements. For exam-
ple, suppose you wanted to adapt this program to process an input file with exam

CH07 p375-436 1/30/07 1:02 PM Page 390

7.1 Array Basics 391

scores that range from 0 to 100. The only change you would would have to make
would be to allocate a larger array:

int[] count = new int[101];

If you had written the program with an if/else approach, you would have to add
96 new branches to account for the new range of values. With the array solution, you
just have to modify the overall size of the array. Notice that the array size is one more
than the highest score (101 rather than 100) because the array is zero-based and because
you can actually get 101 different scores on the test when 0 is a possibility.

Arrays and Methods

You’ve spent so much time learning how to manipulate variables of type int and
double that it will probably take you awhile to get used to some of the differences
that arise when you manipulate arrays. Remember that primitive types like int and
double have value semantics. For example, in Chapter 3 we examined the following
method that was intended to double a number:

public static void doubleNumber(int number) {
System.out.println("Initial value of number = " + number);
number *= 2;
System.out.println("Final value of number = " + number);

}

The printlns made it clear that the method successfully doubles the local vari-
able called number, but we found that it did not double a variable that we included as
a parameter in the call. That is because with the value semantics of primitive types
like int, parameters are copies that have no effect on the original.

Because arrays are objects, they have reference semantics, which means that array
variables store references to array objects and parameter passing involves copying
references. Let’s explore a specific example to better understand this. Earlier in the
chapter we saw the following code for constructing an array of odd numbers and
incrementing each array element:

int[] list = new int[5];
for (int i = 0; i < list.length; i++) {

list[i] = 2 * i + 1;
}

for (int i = 0; i < list.length; i++) {
list[i]++;

}

Let’s see what happens when we move the incrementing loop into a method. It
will need to take the array as a parameter. We’ll rename it data instead of list to
make it easier to distinguish it from the original array variable. Remember that the
array is of type int[], so we would write the method as follows:

CH07 p375-436 1/30/07 1:02 PM Page 391

392 Chapter 7 Arrays

list 31

data

[0]

33

[1]

35

[2]

37

[3]

39

[4]

list 32

data

[0]

34

[1]

36

[2]

38

[3]

310

[4]

list 31

[0]

33

[1]

35

[2]

37

[3]

39

[4]

public static void incrementAll(int[] data) {
for (int i = 0; i < data.length; i++) {

data[i]++;
}

}

You might think this method, like the doubleNumber method, will have no effect
whatsoever, or that we have to return the array to cause the change to be remembered.
But with an array as a parameter, this approach actually works. We can replace the
incrementing loop in the original code with a call on our method:

int[] list = new int[5];
for (int i = 0; i < list.length; i++) {

list[i] = 2 * i + 1;
}
incrementAll(list);

This code produces the same result as the original. Let’s see why it works. After
executing the for loop, the array will contain the first five odd numbers:

Then we call the incrementAll method, passing it the array as a parameter. At
this point we see the critical difference between the behavior of a simple int and the
behavior of an array. In effect, we make a copy of the variable list. But the variable
list is not itself the array; rather, it stores a reference to the array. So, when we
make a copy of that reference, we end up with two references to the same object:

Because data and list both refer to the same object, when we change data by
saying data[i]++, we end up changing the object that list refers to. So, after the
loop increments each element of data, we end up with the following:

At this point the method finishes executing and the parameter data goes away. We
return to the original code with an array that has been changed by the method.

The key lesson to draw from this is that when we pass an array as a parameter to a
method, that method has the ability to change the contents of the array. We don’t
need to return the array to allow this to happen.

CH07 p375-436 1/30/07 1:02 PM Page 392

7.1 Array Basics 393

Now let’s rewrite the Tally program to demonstrate a complete array program
with methods and parameter passing. The program begins by constructing a Scanner
and an array, and then it has two loops: one to read the input file and one to report the
results. We can put each loop in its own method. The first loop reads from the
Scanner and stores its result in the array, so it will need both objects as parameters.
The second reports the values in the array, so it needs just the array as a parameter.
Thus, the main method can be rewritten as follows:

public static void main(String[] args)
throws FileNotFoundException {

Scanner input = new Scanner(new File("tally.dat"));
int[] count = new int[5];
readData(input, count);
reportResults(count);

}

To write the readData method, we just need to move the file-processing loop into
the method and provide an appropriate header:

public static void readData(Scanner input, int[] count) {
while (input.hasNextInt()) {

int next = input.nextInt();
count[next]++;

}
}

As with the incrementAll method, this method would change the array even
though it does not return it. But this isn’t the best approach to use in this situation. It
seems odd that the readData method requires you to construct an array and pass it as
a parameter. Why doesn’t readData construct the array itself? That would simplify
the call to the method, particularly if we ended up calling it multiple times.

If readData is going to construct the array, it will have to return a reference to it.
Otherwise, only the method will have a reference to the newly constructed array. In
its current form, the readData method assumes that the array has already been con-
structed, which is why we wrote these two lines of code in main:

int[] count = new int[5];
readData(input, count);

If the method is going to construct the array, it doesn’t have to be passed as a
parameter, but it will have to be returned by the method. Thus, we can rewrite these
two lines of code from main as a single line:

int[] count = readData(input);

and we can rewrite the readData method so that it constructs and returns the array:

public static int[] readData(Scanner input) {
int[] count = new int[5];
while (input.hasNextInt()) {

CH07 p375-436 1/30/07 1:02 PM Page 393

394 Chapter 7 Arrays

int next = input.nextInt();
count[next]++;

}
return count;

}

Pay close attention to the header of this method. It no longer has the array as a
parameter, and its return type is int[] rather than void. It also ends with a return
statement that returns a reference to the array that it constructs.

If we combine this new version of the method with an implementation of the
reportResults method, we end up with the following complete program:

1 // Variation of Tally program with methods.
2
3 import java.io.*;
4 import java.util.*;
5
6 public class Tally2 {
7 public static void main(String[] args)
8 throws FileNotFoundException {
9 Scanner input = new Scanner(new File("tally.dat"));
10 int[] count = readData(input);
11 reportResults(count);
12 }
13
14 public static int[] readData(Scanner input) {
15 int[] count = new int[5];
16 while (input.hasNextInt()) {
17 int next = input.nextInt();
18 count[next]++;
19 }
20 return count;
21 }
22
23 public static void reportResults(int[] count) {
24 System.out.println("Value\tOccurrences");
25 for (int i = 0; i < count.length; i++) {
26 System.out.println(i + "\t" + count[i]);
27 }
28 }
29 }

This version produces the same output as the original.

The For-Each Loop

Java 5 introduced a new loop construct that simplifies certain array loops. It is known
as the enhanced for loop, or the for-each loop. It can be used whenever you find
yourself wanting to examine each value in an array. For example, in the program
Temperature2 had an array variable called temps and the following loop:

for (int i = 0; i < temps.length; i++) {
if (temps[i] > average) {

CH07 p375-436 1/30/07 1:02 PM Page 394

7.1 Array Basics 395

above++;
}

}

We can rewrite this as a for-each loop:

for (int n : temps) {
if (n > average) {

above++;
}

}

This loop is normally read as, “For each int n in temps. . . .” The basic syntax of
the for-each loop is:

for (<type> <name> : <array>) {
<statement>;
<statement>;
. . .
<statement>;

}

There is nothing special about the variable name, as long as you are consistent in
the body of the loop. For example, the previous loop could be written with the vari-
able x instead of the variable n:

for (int x : temps) {
if (x > average) {

above++;
}

}

The for-each loop is most useful when you simply want to examine each value in
sequence. There are many situations where a for-each loop is not appropriate. For
example, the following loop would double every value in an array called list:

for (int i = 0; i < list.length; i++) {
list[i] *= 2;

}

Because the loop is changing the array, you can’t replace it with a for-each loop:

for (int n : list) {
n *= 2; // changes only n, not the array

}

As the comment indicates, the preceding loop doubles the variable n without
changing the array elements.

Also, in some cases the for-each loop isn’t the most convenient even when the
code involves examining each array element in sequence. Consider, for example, this
loop from the Tally program:

for (int i = 0; i < count.length; i++) {
System.out.println(i + "\t" + count[i]);

}

CH07 p375-436 1/30/07 1:02 PM Page 395

396 Chapter 7 Arrays

A for-each loop could be used to replace the array access:

for (int n : count) {
System.out.println(i + "\t" + n); // not quite legal

}

However, this would cause a problem. We want to print the value of i, but we
eliminated i when we converted this to a for-each loop. We would have to add extra
code to keep track of the value of i, as in:

// legal but clumsy
int i = 0;
for (int n : count) {

System.out.println(i + "\t" + n);
i++;

}

In this case, the for-each loop doesn’t really simplify things, and the original ver-
sion is probably clearer.

Initializing Arrays

Java has a special syntax for initializing an array when you know exactly what you
want to put into it. For example, you could write the following code to initialize an
array of integers to keep track of how many days are in each month (“Thirty days
hath September . . . ”) and an array of Strings to keep track of the abbreviations for
the names of the days of the week:

int[] daysIn = new int[12];
daysIn[0] = 31;
daysIn[1] = 28;
daysIn[2] = 31;
daysIn[3] = 30;
daysIn[4] = 31;
daysIn[5] = 30;
daysIn[6] = 31;
daysIn[7] = 31;
daysIn[8] = 30;
daysIn[9] = 31;
daysIn[10] = 30;
daysIn[11] = 31;

String[] dayNames = new String[7];
dayNames[0] = "Mon";
dayNames[1] = "Tue";
dayNames[2] = "Wed";
dayNames[3] = "Thu";
dayNames[4] = "Fri";
dayNames[5] = "Sat";
dayNames[6] = "Sun";

This works, but it’s a rather tedious way to declare these arrays. Java provides
a shorthand:

CH07 p375-436 1/30/07 1:02 PM Page 396

int[] daysIn = {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
String[] dayNames = {"Mon", "Tue", "Wed", "Thu", "Fri",

"Sat", "Sun"};

The general syntax for array initialization is as follows:

<element type>[] <name> = {<value>, <value>, . . . , <value>};

You use the curly braces to enclose a series of values that will be stored in the
array. Order is important. The first value will go into index 0, the second value will go
into index 1, and so on. Java counts how many values you include and constructs an
array of just the right size. It then stores the various values into the appropriate spots
in the array.

This is one of only two examples we have seen in which Java will construct an
object without the new keyword. The other place we saw this was with String liter-
als, where Java constructs String objects for you without you having to call new.
Both of these are conveniences for programmers. These tasks are so common that the
designers of the language wanted to make it easy to do them.

Limitations of Arrays

You should be aware of some general limitations of arrays:

• You can’t change the size of an array in the middle of program execution.

• You can’t compare arrays for equality using a simple == test. Remember that
arrays are objects, so if you ask whether one array is == to another array, you are
asking whether they are the same object, not whether they store the same values.

• You can’t print an array using a simple print or println statement. You will get
odd output when you do so.

These limitations have existed in Java since the language was first introduced.
Over the years, Sun has introduced several additions to the Java class libraries
to address them. The Arrays class provides a solution to the second and third
limitations. You can compare two arrays for equality by calling the method
Arrays.equals, and you can convert an array into a useful text equivalent by calling
the method Arrays.toString. Both of these methods will be discussed in detail in
the next section, when we explore how they are written.

The first limitation is more difficult to overcome. Because an array is allocated as
a contiguous block of memory, it is not easy to make it larger. To make an array big-
ger, you’d have to construct a new array that is larger than the old one and copy val-
ues from the old to the new array. Java provides a class called ArrayList that does
this growing operation automatically. It also provides methods for inserting values in
and deleting values from the middle of a list. We will explore how to use the
ArrayList class in Chapter 10.

7.1 Array Basics 397

CH07 p375-436 1/30/07 1:02 PM Page 397

398 Chapter 7 Arrays

list 317

[0]

3-3

[1]

342

[2]

38

[3]

312

[4]

32

[5]

3103

[6]

The Arrays class is part of the java.util package that also includes Scanner,
so to use it you must include an import declaration in your program.

7.2 Array-Traversal Algorithms

The last section presented two standard patterns for manipulating an array. The first
is the traversing loop, which uses a variable of type int to index each array value:

for (int i = 0; i < <array>.length; i++) {
<do something with array[i]>;

}

The second is the for-each loop:

for (<type> <name> : <array>) {
<statement>;
<statement>;
. . .
<statement>;

}

In this section we will explore some common array algorithms that can be imple-
mented with these patterns. Of course, not all array operations can be implemented
this way—the section ends with an example that requires a modified version of the
standard code.

We will implement each operation as a method. Java does not allow you to write
generic array code, so we have to pick a specific type. We’ll assume that you are
operating on an array of int values. If you are writing a program to manipulate a dif-
ferent kind of array, you’ll have to modify the code for the type you are using (e.g.,
changing int[] to double[] if you are manipulating an array of double values).

Printing an Array

Suppose you have an array of int values like the following:

How would you go about printing the values in the array? For other types of data
you can use a println statement, as in:

System.out.println(list);

Unfortunately, with an array this produces strange output like the following:

[I@6caf43

This is not helpful output, and it tells us nothing about the contents of the array.
Java provides a solution to this problem in the form of a method called

CH07 p375-436 1/30/07 1:02 PM Page 398

7.2 Array-Traversal Algorithms 399

Arrays.toString that converts the array into a convenient text form. You can
rewrite the println as follows to include a call on Arrays.toString:

System.out.println(Arrays.toString(list));

This produces the following output:

[17, �3, 42, 8, 12, 2, 103]

This is a reasonable way to show the contents of the array, and in many situations
it will be sufficient. However, for those situations where you want something differ-
ent, you can write your own method.

Suppose you want to write each number on a line by itself. In that case, you can
use a for-each loop that does a println for each value:

public static void print(int[] list) {
for (int n : list) {

System.out.println(n);
}

}

You can then call this method with the variable list:

print(list);

This call produces the following output:

17
�3
42
8
12
2
103

There may be some cases where the for-each loop doesn’t get you quite what you
want, though. For example, think of how the Arrays.toString method must be
written. It produces a list of values that are separated by commas, which is a classic
fencepost problem (e.g., seven values are separated by six commas). To solve the
fencepost problem, you’d want to use an indexing loop instead of a for-each loop so
that you could print the first value before the loop:

System.out.print(list[0]);
for (int i = 1; i < list.length; i++) {

System.out.print(", " + list[i]);
}
System.out.println();

Notice that i is initialized to 1 instead of 0 because list[0] is printed before the
loop. This code produces the following output for the preceeding sample array:

17, �3, 42, 8, 12, 2, 103

CH07 p375-436 1/30/07 1:02 PM Page 399

400 Chapter 7 Arrays

list 38

[0]

37

[1]

319

[2]

382

[3]

38

[4]

37

[5]

38

[6]

Even this code is not correct, though, because it assumes that there is a list[0] to
print. It is possible for arrays to be empty, with a length of 0, in which case this code
will generate an ArrayIndexOutOfBoundsException. The following is a version of
the method that behaves the same way Arrays.toString behaves. The printing state-
ments just before and just after the loop have been modified to include square brackets,
and a special case has been included for empty arrays:

public static void print(int[] list) {
if (list.length == 0) {

System.out.println("[]");
} else {

System.out.print("[" + list[0]);
for (int i = 1; i < list.length; i++) {

System.out.print(", " + list[i]);
}
System.out.println("]");

}
}

Searching and Replacing

Often with an array, you want to search for a specific value. For example, you might
want to count how many times a particular value appears in an array. Suppose you
have an array of int values like the following:

Counting occurrences is the simplest search task, because you always examine
each value in the array and you don’t need to change the contents of the array. As a
result, you can accomplish this with a for-each loop that keeps a count of the number
of occurrences of the value you’re searching for:

public static int count(int[] list, int target) {
int count = 0;
for (int n : list) {

if (n == target) {
count++;

}
}
return count;

}

Given this method, you can make the following call to figure out how many 8s are
in the list:

int number = count(list, 8);

This call would set number to 3 for the sample array, because there are three
occurrences of 8 in the list. If you instead made the following call:

CH07 p375-436 1/30/07 1:02 PM Page 400

7.2 Array-Traversal Algorithms 401

int number = count(list, 2);

number would be set to 0, because there are no occurrences of 2 in the list.
Sometimes you want to find out where something is in a list. You can accomplish

this by writing a method that will return the index of the first occurrence of the value
in the list. Because you don’t know exactly where you’ll find the value, you might try
this with a while loop, as in the following pseudocode:

int i = 0;
while (we haven't found it yet) {

i++;
}

However, there is a simpler approach. Because you’re writing a method that
returns a value, you can return the appropriate index as soon as you find a match.
That means you can use the standard traversal loop to solve this problem:

for (int i = 0; i < list.length; i++) {
if (list[i] == target) {

return i;
}

}

Remember that a return statement terminates a method, so you’ll break out of
this loop as soon as the target value is found. But what if the value isn’t found? What
if you traverse the entire array and find no matches? In that case, the for loop will
finish executing without ever returning a value.

There are many things you can do if the value is not found. The convention used
throughout the Java class libraries is to return the value -1 to indicate that the value is
not anywhere in the list. So you can add an extra return statement after the loop that
will be executed only in cases where the target value is not found. Putting all this
together, you get the following method:

public static int indexOf(int[] list, int target) {
for (int i = 0; i < list.length; i++) {

if (list[i] == target) {
return i;

}
}
return �1;

}

Given that method, you can make the following call to find the first occurrence of
the value 7 in the list:

int position = indexOf(list, 7);

This call would set position to 1 for the sample array, because the first occur-
rence of 7 is at index 1. There is another occurrence of 7 later in the array, at index 5,
but this code terminates as soon as it finds the first match.

CH07 p375-436 1/30/07 1:02 PM Page 401

402 Chapter 7 Arrays

If you instead made the following call:

int position = indexOf(list, 42);

position would be set to -1 because there are no occurrences of 42 in the list.
As a final variation, consider the problem of replacing all occurrences of a

value with some new value. This is similar to the counting task. You’ll want to tra-
verse the array looking for a particular value and replace the value with something
new when you find it. You can’t accomplish that with a for-each loop, because
changing the loop variable has no effect on the array. Instead, use a standard tra-
versing loop:

public static void replaceAll(int[] list, int target,
int replacement) {

for (int i = 0; i < list.length; i++) {
if (list[i] == target) {

list[i] = replacement;
}

}
}

Notice that even though the method is changing the contents of the array, you
don’t need to return it to have that change take place.

As noted at the beginning of this section, these examples involve an array of inte-
gers, and you would have to change the type if you were to manipulate an array of a
different type (for example, changing int[] to double[] if you instead had an array
of double values). But the change isn’t quite so simple if you instead have an array
of objects, such as Strings. String values need to be compared with a call on the
equals method rather than using a simple == comparison. Here is a modified version
of the replaceAll method that would be appropriate for an array of Strings:

public static void replaceAll(String[] list, target,
String replacement) {

for (int i = 0; i < list.length; i++) {
if (list[i].equals(target)) {

list[i] = replacement;
}

}
}

Testing for Equality

Because arrays are objects, testing them for equality is more complex than it is for
primitive values like integers and doubles. For example, consider the following code
that initializes two array objects to store a sequence of odd numbers and sets a third
array variable to point to the second array:

int[] list1 = new int[5];
int[] list2 = new int[5];
for (int i = 0; i < list1.length; i++) {

list1[i] = 2 * i + 1;
list2[i] = 2 * i + 1;

}
int[] list3 = list2;

String

CH07 p375-436 1/30/07 1:02 PM Page 402

7.2 Array-Traversal Algorithms 403

list2 3 1

list3

[0]

3 3

[1]

3 5

[2]

3 7

[3]

3 9

[4]

list1 3 1

[0]

3 3

[1]

3 5

[2]

3 7

[3]

3 9

[4]

The code is written in such a way that list2 will always have the exact same length
and sequence of values as list1. After executing this code, memory would look like this:

We’ve seen this situation before. We have three variables but only two objects. The
variables list2 and list3 both refer to the same array object. As a result, if we ask
whether list2 == list3, the answer will be yes (the expression evaluates to true).
But if we ask whether list1 == list2, the answer will be no (the expression eval-
uates to false).

There are times in programming when you want to know whether two variables
refer to exactly the same object, but you’ll also often find yourself just wanting to
know if two objects are somehow equivalent in value. In this case, the two arrays
have been intentionally constructed to match, so you might want to ask whether the
two arrays are equivalent in value. For arrays, that would mean that they have the
same length and store the same sequence of values.

The method Arrays.equals provides this functionality. So, you could write code
like the following:

if (Arrays.equals(list1, list2)) {
System.out.println("The arrays are equal");

}

As with the Arrays.toString method, often the Arrays.equals method will be
all you need. But sometimes you’ll want slight variations, so it’s worth exploring how
to write the method yourself.

The method will take two arrays as parameters and will return a boolean result
indicating whether or not the two arrays are equal. So, the method will look like this:

public static boolean equals(int[] list1, int[] list2) {
. . .

}

When you sit down to write a method like this, you probably think in terms of
defining equality: “The two arrays are equal if their lengths are equal and they store
the same sequence of values.” But this isn’t the easiest approach. For example, you
could begin by testing that the lengths are equal, but what would you do then?

public static boolean equals(int[] list1, int[] list2) {
if (list1.length == list2.length) {

// what do we do?
. . .

}
. . .

}

CH07 p375-436 1/30/07 1:02 PM Page 403

404 Chapter 7 Arrays

Methods like this are generally easier to write if you think in terms of the opposite
condition: What would make the two arrays unequal? Instead of testing for the
lengths being equal, start by testing that the lengths are unequal. In that case, you
know exactly what to do. If the lengths are not equal, you can return a value of false
because you’ll know the arrays are not equal to each other:

public static boolean equals(int[] list1, int[] list2) {
if (list1.length != list2.length) {

return false;
}
. . .

}

If you get past the if statement, you know that the arrays are of equal length.
Then you’ll want to check whether they store the same sequence of values. Again,
test for inequality rather than equality, returning false if there’s a difference:

public static boolean equals(int[] list1, int[] list2) {
if (list1.length != list2.length) {

return false;
}
for (int i = 0; i < list1.length; i++) {

if (list1[i] != list2[i]) {
return false;

}
}
. . .

}

If you get past the for loop, you’ll know that the two arrays are of equal length
and that they store exactly the same sequence of values. In that case, you’ll want to
return the value true to indicate that the arrays are equal. This completes the method:

public static boolean equals(int[] list1, int[] list2) {
if (list1.length != list2.length) {

return false;
}
for (int i = 0; i < list1.length; i++) {

if (list1[i] != list2[i]) {
return false;

}
}
return true;

}

This is a common pattern for a method like equals: You test all of the ways that
the two objects might not be equal, returning false if you find any differences, and
you return true at the very end so that if all the tests are passed the two objects are
declared to be equal.

CH07 p375-436 1/30/07 1:02 PM Page 404

7.2 Array-Traversal Algorithms 405

list 33

[0]

38

[1]

37

[2]

3-2

[3]

314

[4]

378

[5]

list 3 3

[0]

3 8

[1]

3 7

[2]

3 -2

[3]

3 14

[4]

3 78

[5]

swap these

list 3 78

[0]

3 8

[1]

3 7

[2]

3 -2

[3]

3 14

[4]

3 3

[5]

then swap
these

Reversing an Array

As a final example of common operations, let’s consider the task of reversing the
order of the elements stored in an array. For example, suppose you have an array with
the following values stored in it:

One approach would be to create a new array and to store the values from the first
array into the second array in reverse order. While that approach would be reason-
able, you should be able to solve the problem without constructing a second array.
Another approach is to consider the problem as a series of exchanges or swaps. For
example, the value 3 at the front of the list and the value 78 at the end of the list need
to be swapped:

After swapping that pair, you can swap the next pair in (the values at indexes 1 and 4):

and continue swapping until the entire list has been reversed. Before we look at the
reversing code, let’s consider the general problem of swapping two values.

Suppose you have two integer variables x and y with the values 3 and 78:

int x = 3;
int y = 78;

How would you swap these values? A naive approach is to simply assign in
each direction:

// will not swap properly
x = y;
y = x;

Unfortunately, this doesn’t work. You start out with the following:

x 3x 3 y 78

CH07 p375-436 1/30/07 1:02 PM Page 405

406 Chapter 7 Arrays

x 3x 78 y 78 temp 3

x 3x 78 y 3 temp 3

x 3x 78 y 78

x 3x 3 y 78 temp 3

You want x to eventually become equal to 78, but if you attempt to solve the prob-
lem this way, you lose the old value of x. The second assignment statement then copies
the new value of x, 78, back into y, which leaves you with two variables equal to 78.

The standard solution is to introduce a temporary variable that you can use to store
the old value of x while you’re giving x its new value. You can then copy the old
value of x from the temporary variable into y to complete the swap:

int temp = x;
x = y;
y = temp;

With this code, you start by copying the old value of x into temp:

Then you put the value of y into x:

Next, you copy the old value of x from temp to y:

At this point you have successfully swapped the values of x and y, so you don’t
need temp anymore.

In some languages you can define this as a swap method that can be used to
exchange two int values:

// this method won't work
public static void swap(int x, int y) {

int temp = x;
x = y;
y = temp;

}

As you’ve seen, this kind of method won’t work in Java because the x and y that
are swapped will be copies of any integer values passed to them. But because arrays
are stored as objects, you can write a variation of this method that takes an array and
two indexes as parameters and swaps the values at those indexes:

public static void swap(int[] list, int i, int j) {
int temp = list[i];
list[i] = list[j];
list[j] = temp;

}

When the first assignment statement is executed, you copy the value of y into x:

CH07 p375-436 1/30/07 1:02 PM Page 406

7.2 Array-Traversal Algorithms 407

The code in this method matches the code in the previous method, but instead of
using x and y it uses list[i] and list[j]. This method will work because instead
of changing simple int variables, it’s changing the contents of the array.

Given this swap method, you can fairly easily write a reversing method. You just
have to think about what combinations of values to swap. Start by swapping the first
and last values. The sample array has a length of 6, which means this involves swap-
ping the values at indexes 0 and 5. But you want to write the code so that it works for
an array of any length. In general, the first swap you’ll want to perform is to swap
element 0 with element (list.length - 1):

swap(list, 0, list.length � 1);

Then you’ll want to swap the second value with the second-to-last value:

swap(list, 1, list.length � 2);

and the third value with the third-to-last value:

swap(list, 2, list.length � 3);

There is a pattern to these swaps that you can capture with a loop. If you use a
variable i for the first parameter of the call on swap and introduce a local variable j
to store an expression for the second parameter to swap, each of these calls will take
the following form:

int j = list.length � i � 1;
swap(list, i, j);

To implement the reversal, you could put this inside the standard traversal loop:

// doesn't quite work
for (int i = 0; i < list.length; i++) {

int j = list.length � i � 1;
swap(list, i, j);

}

If you were to test this code, though, you’d find that it seems to have no effect
whatsoever. The list stores the same values after executing this code as it stores ini-
tially. The problem is that this loop does too much swapping. Here is a trace of the six
swaps that are performed, with an indication of the values of i and j for each step:

list 378

[0]

38

[1]

37

[2]

3-2

[3]

314

[4]

33

[5]

i j

list 378 314 37 3-2 38 33

i j

list 378 314 3-2 37 38 33

i j

CH07 p375-436 1/30/07 1:02 PM Page 407

408 Chapter 7 Arrays

list 378 314 37 3-2 38 33

j i

list 378 38 37 3-2 314 33

j i

list 33 38 37 3-2 314 378

j i

The values of i and j cross halfway through this process. As a result, the first
three swaps successfully reverse the array, and then the three swaps that follow undo
the work of the first three. To fix this problem, you need to stop it halfway through
the process. This is easily accomplished by changing the test:

for (int i = 0; i < list.length / 2; i++) {
swap(list, i, list.length � i � 1);

}

In the sample array, list.length is 6. Half of that is 3, which means that this loop
will execute exactly three times. That is just what you want in this case (the first three
swaps), but you should be careful to consider other possibilities. For example, what if
list.length is 7? Half of that is also 3, because of truncating division. Is three the
correct number of swaps for an odd-length list? The answer is yes. If there are an odd
number of elements, there is a value in the middle of the list that does not need to be
swapped. So, in this case, a simple division by 2 turns out to be the right approach.

Including this code in a method, you end up with the following overall solution:

public static void reverse(int[] list) {
for (int i = 0; i < list.length / 2; i++) {

swap(list, i, list.length � i � 1);
}

}

7.3 Advanced Array Techniques

In this section we’ll discuss some advanced uses of arrays, such as algorithms that
cannot be solved with straightforward traversals. We’ll also see how to create arrays
that store objects instead of primitive values.

Shifting Values in an Array

You’ll often want to move a series of values in an array. For example, suppose you have
an array of integers that stores the sequence of values (3, 8, 9, 7, 5) and you want to
rotate the values so that the value at the front of the list goes to the back and the order
of the other values stays the same. In other words, you want to move the 3 to the back,
yielding the list (8, 9, 7, 5, 3). Let’s explore how to write code to perform that action.

CH07 p375-436 1/30/07 1:02 PM Page 408

7.3 Advanced Array Techniques 409

list 33

[0]

38

[1]

39

[2]

37

[3]

35

[4]

list 33

[0]

38

[1]

39

[2]

37

[3]

35

[4]

list 38 39 37 35 35

Suppose you have a variable of type int[] called list of length 5 that stores the
values (3, 8, 9, 7, 5):

The shifting operation is similar to the swap operation discussed in the last sec-
tion, and you’ll find that it is useful to use a temporary variable here as well. The 3 at
the front of the list is supposed to go to the back of the list, and the other values are
supposed to rotate forwards. You can make the task easier by storing the value at the
front of the list (3, in this example) into a local variable:

int first = list[0];

With that value safely tucked away, you now have to shift the other four values left
by one position:

The overall task breaks down into four different shifting operations, each of which
is a simple assignment statement:

list[0] = list[1];
list[1] = list[2];
list[2] = list[3];
list[3] = list[4];

Obviously you’d want to write this as a loop rather than writing a series of individ-
ual assignment statements. Each of the preceding statements is of the form:

list[i] = list[i + 1];

You’ll replace list element [i] with the value currently stored in list element
[i + 1], which shifts that value to the left. As a first attempt, you can put this line
of code inside the standard traversing loop:

for (int i = 0; i < list.length; i++) {
list[i] = list[i + 1];

}

This is almost the right answer, but it has an off-by-one bug. This loop will exe-
cute five times for the sample array, but you only want to shift four values (you want
to do the assignment for i equal to 0, 1, 2, and 3, but not for i equal to 4). So, this

CH07 p375-436 1/30/07 1:02 PM Page 409

410 Chapter 7 Arrays

list 33

[0]

38

[1]

39

[2]

37

[3]

35

[4]

list 33 33 38 39 37

loop goes one too many times. On the last iteration of the loop, when i is equal to 4,
it executes this line of code:

list[i] = list[i + 1];

which becomes:

list[4] = list[5];

There is no value list[5] because the array has only five elements, with indexes
0 through 4. So, this code generates an ArrayIndexOutOfBoundsException. To fix
the problem, alter the loop so that it stops one early:

for (int i = 0; i < list.length � 1; i++) {
list[i] = list[i + 1];

}

In place of the usual list.length, use (list.length - 1). You can think of the
minus one in this expression as offsetting the plus one in the assignment statement.

Of course, there is one detail left to deal with. After shifting the values to the left,
you’ve made room at the end of the list for the value that used to be at the front of the
list (which is currently stored in a local variable called first). After the loop exe-
cutes, you have to place it at index 4:

list[list.length � 1] = first;

Putting all of this together into a static method, you get:

public static void rotateLeft(int[] list) {
int first = list[0];
for (int i = 0; i < list.length � 1; i++) {

list[i] = list[i + 1];
}
list[list.length � 1] = first;

}

An interesting variation is to rotate the values to the right instead of rotating to the
left, which is the inverse operation. In this case, you want to take the value that is cur-
rently at the end of the list and bring it to the front, shifting the remaining values to
the right. So, if a variable called list initially stores the values (3, 8, 9, 7, 5), it
should bring the 5 to the front and store the values (5, 3, 8, 9, 7).

Begin by tucking away the value that is being rotated into a temporary variable:

int last = list[list.length � 1];

Then shift the other values to the right:

CH07 p375-436 1/30/07 1:02 PM Page 410

7.3 Advanced Array Techniques 411

list 33

[0]

38

[1]

39

[2]

37

[3]

35

[4]

list 33 33 39 37 35

list 33

[0]

33

[1]

39

[2]

37

[3]

35

[4]

list 33 33 33 37 35

In this case, the four individual assignment statements would be:

list[1] = list[0];
list[2] = list[1];
list[3] = list[2];
list[4] = list[3];

Or, written more generally:

list[i] = list[i � 1];

If you put this inside the standard for loop, you get:

// doesn't work
for (int i = 0; i < list.length; i++) {

list[i] = list[i � 1];
}

There are two problems with this code. First, there is another off-by-one bug. The
first assignment statement you want to perform would set list[1] to be what is cur-
rently in list[0], but this loop sets list[0] to list[-1]. That generates an
ArrayIndexOutOfBoundsException because there is no value list[-1]. You want
to start i at 1, not 0:

// still doesn't work
for (int i = 1; i < list.length; i++) {

list[i] = list[i � 1];
}

However, this doesn’t work either. It avoids the
ArrayIndexOutOfBoundsException, but think about what it does. The first time
through the loop it assigns list[1] to what is in list[0]:

What happened to the value 8? It’s overwritten with the value 3. The next time
through the loop list[2] is set to be list[1]:

CH07 p375-436 1/30/07 1:02 PM Page 411

412 Chapter 7 Arrays

list 33

[0]

38

[1]

39

[2]

37

[3]

35

[4]

list 33 38 39 37 37

list 3 3

[0]

3 8

[1]

3 9

[2]

3 7

[3]

3 7

[4]

list 3 3 3 8 3 9 3 9 3 7

list 33 33 38 39 37

list 33

[0]

38

[1]

39

[2]

37

[3]

35

[4]

list 35 33 38 39 37

You might say, “Wait a minute . . . list[1] isn’t a 3, it’s an 8.” It was an 8 when
you started, but the first iteration of the loop replaced the 8 with a 3, and now that 3
has been copied into the spot where 9 used to be.

The loop continues in this way, putting 3 into every cell of the array. Obviously,
that’s not what you want. To make this code work, you have to run the loop in
reverse order (from right to left instead of left to right). So let’s back up to where we
started:

We tucked away the final value of the list into a local variable. That frees up the
final array position. Now, assign list[4] to be what is in list[3]:

This wipes out the 5 that was at the end of the list, but that value is safely stored away
in a local variable. And once you’ve performed this assignment statement, you free up
list[3], which means you can now set list[3] to be what is currently in list[2]:

The process continues in this manner, copying the 8 from index 1 to index 2 and
copying the 3 from index 0 to index 1, leaving you with the following:

At this point, the only thing left to do is to put the 5 stored in the local variable at
the front of the list:

You can reverse the for loop by changing the i++ to i�� and adjusting the ini-
tialization and test. Putting all this together, you get the following method:

CH07 p375-436 1/30/07 1:02 PM Page 412

7.3 Advanced Array Techniques 413

public static void rotateRight(int[] list) {
int last = list[list.length � 1];
for (int i = list.length � 1; i > 0; i��) {

list[i] = list[i � 1];
}
list[0] = last;

}

Arrays of Objects

All of the arrays we have looked at so far have stored primitive values like simple
int values, but you can have arrays of any Java type. Arrays of objects behave
slightly differently, though, because objects are stored as references rather than as
data values. Constructing an array of objects is usually a two-step process, because
you normally have to construct both the array and the individual objects.

Consider, for example, the following statement:

Point[] points = new Point[3];

This declares a variable called points that refers to an array of length 3 that stores
references to Point objects. The new keyword doesn’t construct any actual Point
objects. Instead it constructs an array of length 3, each element of which can store a
reference to a Point. When Java constructs the array, it auto-initializes these array
elements to the zero-equivalent for the type. The zero-equivalent for all reference
types is the special value null, which indicates “no object”:

The actual Point objects must be constructed separately with the new keyword, as in:

Point[] points = new Point[3];
points[0] = new Point(3, 7);
points[1] = new Point(4, 5);
points[2] = new Point(6, 2);

After these lines of code execute, you would have individual Point objects
referred to by the various array elements:

Notice that the new keyword is required in four different places, because there are
four objects to be constructed: the array itself and the three individual Point objects.

points 3null

[0]

3null

[1]

3null

[2]

points

[0] [1] [2]

x 3x 3 y 7 x 3x x4 y 5 36 y 2

CH07 p375-436 1/30/07 1:02 PM Page 413

414 Chapter 7 Arrays

args

[0] [1]

"temperature.dat" "temperature.out"

You could also use the curly brace notation for initializing the array, in which case
you don’t need the new keyword to construct the array itself:

Point[] points = {new Point(3, 7), new Point(4, 5),
new Point(6, 2)};

Command-Line Arguments

As you’ve seen since Chapter 1, whenever you define a main method, you’re
required to include as its parameter String[] args, which is an array of String
objects. Java itself initializes this array if the user provides what are known as
command-line arguments when invoking Java. For example, a Java class called
DoSomething would normally be started from the command interface by a com-
mand like this:

java DoSomething

The user has the option to type extra arguments, as in:

java DoSomething temperature.dat temperature.out

In this case the user has specified two extra arguments that are file names that the
program should use (e.g., the names of an input and output file). If the user types
these extra arguments when starting up Java, the String[] args parameter to main
will be initialized to an array of length 2 storing these two strings:

7.4 Multidimensional Arrays (Optional)

The array examples in the previous sections all involved what are known as one-
dimensional arrays (a single row or a single column of data). Often, you’ll want to
store data in a multidimensional way. For example, you might want to store a two-
dimensional grid of data that has both rows and columns. Fortunately, you can form
arrays of arbitrarily many dimensions:

• double: one double

• double[]: a one-dimensional array of doubles

• double[][]: a two-dimensional grid of doubles

• double[][][]: a three-dimensional collection of doubles

• . . .

CH07 p375-436 1/30/07 1:02 PM Page 414

7.4 Multidimensional Arrays (Optional) 415

Arrays of more than one dimension are called multidimensional arrays.

Multidimensional Array

An array of arrays, the elements of which are accessed with multiple inte-
ger indexes.

Rectangular Two-Dimensional Arrays

The most common use of a multidimensional array is a two-dimensional array of a
certain width and height. For example, suppose that on three separate days you took a
series of five temperature readings. You can define a two-dimensional array that has
three rows and five columns as follows:

double[][] temps = new double[3][5];

Notice that on both the left and right sides of this assignment statement, you have
to use a double set of square brackets. When describing the type on the left, you have
to make it clear that this is not just a one-dimensional sequence of values, which
would be of type double[], but instead a two-dimensional grid of values, which is of
type double[][]. On the right, in constructing the array, you must specify the
dimensions of the grid. The normal convention is to list the row first followed by the
column. The resulting array would look like this:

As with one-dimensional arrays, the values are initialized to 0.0 and the indexes
start with 0 for both rows and columns. Once you’ve created such an array, you can
refer to individual elements by providing specific row and column numbers (in that
order). For example, to set the fourth value of the first row to 98.3 and to set the first
value of the third row to 99.4, you would say:

temps[0][3] = 98.3; // fourth value of first row
temps[2][0] = 99.4; // first value of third row

After executing these lines of code, the array would look like this:

temps

30.0

[0]

[0] 30.0

[1]

[1]

30.0

[2]

[2]

30.0

[3]

30.0

30.0 30.0 30.0 30.0 30.0

30.0 30.0 30.0 30.0 30.0

[4]

temps

30.0

[0]

[0] 30.0

[1]

[1]

30.0

[2]

[2]

398.3

[3]

30.0

30.0 30.0 30.0 30.0 30.0

399.4 30.0 30.0 30.0 30.0

[4]

CH07 p375-436 1/30/07 1:02 PM Page 415

416 Chapter 7 Arrays

It is helpful to think of this in a stepwise fashion, starting with the name of the
array. For example, if you want to refer to the first value of the third row, you obtain
that through the following steps:

temps the entire grid
temps[2] the entire third row
temps[2][0] the first element of the third row

You can pass multidimensional arrays as parameters just as you pass one-
dimensional arrays. You need to be careful about the type, though. To pass the tem-
perature grid, you would have to use a parameter of type double[][] (with both
sets of brackets). For example, here is a method that prints the grid:

public static void print(double[][] grid) {
for (int i = 0; i < grid.length; i++) {

for (int j = 0; j < grid[i].length; j++) {
System.out.print(grid[i][j] + " ");

}
System.out.println();

}
}

Notice that to ask for the number of rows you ask for grid.length and to ask for
the number of columns you ask for grid[i].length.

The Arrays.toString method mentioned earlier in this chapter does work on
multidimensional arrays, but it produces a poor result. When used with the preceding
array temps, it can be used to produce output such as the following:

[[D@14b081b, [D@1015a9e, [D@1e45a5c]

This is because Arrays.toString works by concatenating the String represen-
tations of the array’s elements. In this case the elements are arrays themselves, so
they do not convert into Strings properly. To correct the problem you can use a dif-
ferent method, called Arrays.deepToString that will return better results for multi-
dimensional arrays:

System.out.println(Arrays.deepToString(temps));

The call produces the following output:

[[0.0, 0.0, 0.0, 98.3, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0],
[99.4, 0.0, 0.0, 0.0, 0.0]]

Arrays can have as many dimensions as you want. For example, if you want a
three-dimensional 4 by 4 by 4 cube of integers, you would say:

int[][][] numbers = new int[4][4][4];

The normal convention would be to assume that this is the plane number followed
by the row number followed by the column number, although you can use any con-
vention you want as long as your code is written consistently.

CH07 p375-436 1/30/07 1:02 PM Page 416

7.4 Multidimensional Arrays (Optional) 417

jagged

30

[0]

[0] 30

[1]

[1]

[2]

[2]

[3]

30 30 30 30

30 30 30

Jagged Arrays

The previous examples have involved rectangular grids that have a fixed number of
rows and columns. It is also possible to create a jagged array, where the number of
columns varies from row to row.

To construct a jagged array, divide the construction into two steps: Construct the
array for holding rows first, and then construct each individual row. For example, to
construct an array that has two elements in the first row, four elements in the second
row, and three elements in the third row, you can say:

int[][] jagged = new int[3][];
jagged[0] = new int[2];
jagged[1] = new int[4];
jagged[2] = new int[3];

This would construct an array that looks like this:

We can explore this technique by writing a program that produces the rows of
what is known as Pascal’s Triangle. The numbers in the triangle have many useful
mathematical properties. For example, row n of Pascal’s triangle contains the coeffi-
cients obtained when you expand:

(x + y)n

Here are the results for n between 0 and 4:

(x + y)0 = 1
(x + y)1 = x + y
(x + y)2 = x2 + 2xy + y2

(x + y)3 = x3 + 3x2y + 3xy2+y3

(x + y)4 = x4 + 4x3y + 6x2y2 + 4xy3+y4

If you pull out just the coefficients, you get the following:

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1

This is Pascal’s triangle. One of the properties of the triangle is that given any row,
you can use it to compute the next row. For example, let’s start with the last row from
the preceding triangle:

1 4 6 4 1

CH07 p375-436 1/30/07 1:02 PM Page 417

418 Chapter 7 Arrays

(1 + 4)

5

(4 + 6)

10

(6 + 4)

10

(4 + 1)

5

We can compute the next row by adding adjacent pairs of values together. So, we
add together the first pair of numbers (1 + 4), then the second pair of numbers
(4 + 6), and so on:

Then we put a 1 at the front and back of this list of numbers, and we end up with
the next row of the triangle:

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1

This property of the triangle provides a technique for computing it. We can con-
struct it row by row, computing each new row from the values in the previous row.
In other words, we are going to write a loop like this (assuming we have a two-
dimensional array called triangle in which to store the answer):

for (int i = 0; i < triangle.length; i++) {
construct triangle[i] using triangle[i - 1].

}

We just need to flesh out the details of how a new row is constructed. This is going
to be a jagged array because each row has a different number of elements. Looking at
the triangle, you’ll see that the first row (row 0) has one value in it, the second row
(row 1) has two values in it, and so on. In general, row i has (i + 1) values, so we
can refine our pseudocode as follows:

for (int i = 0; i < triangle.length; i++) {
triangle[i] = new int[i + 1];
fill in triangle[i] using triangle[i - 1].

}

We know that the first and last values in the row should be 1:

for (int i = 0; i < triangle.length; i++) {
triangle[i] = new int[i + 1];
triangle[i][0] = 1;
triangle[i][i] = 1;
fill in the middle of triangle[i] using triangle[i - 1]

}

And we know that the middle values comes from the previous row. To figure out
how to do this, let’s draw a picture of the array we are attempting to build:

CH07 p375-436 1/30/07 1:02 PM Page 418

7.4 Multidimensional Arrays (Optional) 419

triangle

31

[0]

[0]

[1]

[1]

[2]

[2]

[3]

31 31

31 32 31

[3] 31 33 33 31

[4] 31 34 36 34 31

[5] 31 35 310 310 35

[4]

31

[5]

We have already written code to fill in the 1 that appears at the beginning and end
of each row. We now need to write code to fill in the middle values. Look at row 5 for
an example. The value 5 in column 1 comes from the sum of the values 1 and 4 in
columns 0 and 1 in the previous row. The value 10 in column 2 comes from the sum
of the values in columns 1 and 2 in the previous row.

More generally, each of these middle values is the sum of the two values from the
previous row that appear just above and just above and to the left of it. In other
words, for column j:

triangle[i][j] = (value above and left) + (value above);

We can turn this into actual code by using the appropriate array indexes:

triangle[i][j] = triangle[i � 1][j � 1] + triangle[i � 1][j];

We need to include this statement in a for loop so that it assigns all of the middle
values, which allows us to finish converting our pseudocode into actual code:

for (int i = 0; i < triangle.length; i++) {
triangle[i] = new int[i + 1];
triangle[i][0] = 1;
triangle[i][i] = 1;
for (int j = 1; j < i; j++) {

triangle[i][j] = triangle[i � 1][j � 1]
+ triangle[i � 1][j];

}
}

If we include this code in a method along with a printing method similar to the grid-
printing method described earlier, we end up with the following complete program:

1 // This program constructs a jagged two-dimensional array
2 // that stores Pascal's Triangle. It takes advantage of the
3 // fact that each value other than the 1s that appear at the
4 // beginning and end of each row is the sum of two values
5 // from the previous row.
6
7 public class PascalsTriangle {
8 public static void main(String[] args) {
9 int[][] triangle = new int[11][];
10 fillIn(triangle);
11 print(triangle);

CH07 p375-436 1/30/07 1:02 PM Page 419

420 Chapter 7 Arrays

12 }
13
14 public static void fillIn(int[][] triangle) {
15 for (int i = 0; i < triangle.length; i++) {
16 triangle[i] = new int[i + 1];
17 triangle[i][0] = 1;
18 triangle[i][i] = 1;
19 for (int j = 1; j < i; j++) {
20 triangle[i][j] = triangle[i � 1][j � 1]
21 + triangle[i � 1][j];
22 }
23 }
24 }
25
26 public static void print(int[][] triangle) {
27 for (int i = 0; i < triangle.length; i++) {
28 for (int j = 0; j < triangle[i].length; j++) {
29 System.out.print(triangle[i][j] + " ");
30 }
31 System.out.println();
32 }
33 }
34 }

It produces the following output:

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
1 7 21 35 35 21 7 1
1 8 28 56 70 56 28 8 1
1 9 36 84 126 126 84 36 9 1
1 10 45 120 210 252 210 120 45 10 1

7.5 Case Study: Hours Worked

Let’s look at a more complex program example that involves using arrays. Suppose
we have an input file containing data indicating how many hours an employee has
worked, with each line of the input file indicating the hours worked for a different
week. Each week has seven days, so there could be up to seven numbers listed on
each line. We generally consider Monday to be the start of the work week, so let’s
assume that each line lists hours worked on Monday followed by hours worked on
Tuesday, and so on, ending with hours worked on Sunday. But we’ll allow the lines
to have fewer than seven numbers, because the person may not always work seven
days. Here is a sample input file that we’ll call hours.txt:

CH07 p375-436 1/30/07 1:02 PM Page 420

7.5 Case Study: Hours Worked 421

8 8 8 8 8
8 4 8 4 8 4 4
8 4 8 4 8
3 0 0 8 6 4 4
8 8
0 0 8 8
8 8 4 8 4

Let’s write a program that reads this input file, reporting totals for each row and
each column. The totals for each row will tell us how many hours the person has
worked each week. The totals for each column will tell us how many hours the per-
son worked on Mondays versus Tuesdays versus Wednesdays, and so on.

One way to approach this problem would be to store all of the data in a two-
dimensional array and then add up the individual rows and columns. However, we
don’t need quite such a complicated solution for this particular task.

We have to process the input file one line at a time, so it makes sense to read each
line of data into an array and to report the total for that line as soon as we have read it
in. This takes care of reporting the sum for each row. To report the sum for each col-
umn, we can have a second array that keeps track of the running sum for the columns
(the sum up to this line of the input file). This array will have to be constructed
before the file-processing loop and can be printed after the loop finishes reading the
input file. This approach is an array equivalent of the cumulative sum algorithm.

The basic approach is outlined in the following pseudocode:

construct array for total.
for (each line of the input file) {

transfer the next line of data into an array.
report the sum of the array (sum for this row).
add this data to total array.

}
print total array.

We will once again develop the program in stages:

1. A program that reads each line of the input file into an array, printing each array
to verify that the file is being read correctly

2. A program that reads each line of the input file into an array, adding it into a
total array that sums the columns

3. A complete program that reports the sum of each row and that prints the total in
an easy-to-read format

Version 1: Reading the Input File

In the first version of the program, we’ll write the basic file-processing code that will
read each line of data into an array. Eventually we will have to process that data, but
for now we will simply print the array to verify that the code is working properly.

CH07 p375-436 1/30/07 1:02 PM Page 421

422 Chapter 7 Arrays

The main method can be fairly short, opening the input file we want to read and
calling a method to process the file:

public static void main(String[] args)
throws FileNotFoundException {

Scanner input = new Scanner(new File("hours.txt"));
processFile(input);

}

That leaves us the task of writing the code for processFile. We saw in Chapter 6
that for line-oriented data, we can generally use the following pattern as a starting
point for file-processing code:

while (input.hasNextLine()) {
String text = input.nextLine();
process text.

}

For this version of the program, processing the text involves transferring data from
the String into an array and printing the contents of the array. We can put the transfer
code in its own method to keep processFile short and we can use Arrays.toString
to print the array, which means that the body of processFile becomes:

while (input.hasNextLine()) {
String text = input.nextLine();
int[] next = transferFrom(text);
System.out.println(Arrays.toString(next));

}

The transferFrom method is given a String as a parameter and is supposed to
construct a new array containing the numbers from the String. As usual, we will
construct a Scanner from the String that allows us to read the individual numbers.
Each input line has at most seven numbers, but it might have fewer. As a result, it
makes sense to use a while loop that tests whether there are more numbers left to
read from the Scanner:

construct a Scanner and array.
while (the Scanner has a next int) {

process next int from scanner.
}

In this case, processing the next integer from the input means storing it in the
array. The first number should go into index 0, the second number in index 1, the
third number in index 2, and so on. That means we need some kind of integer counter
that increments by one each time through the loop:

construct a Scanner and array.
initialize i to 0.
while (the Scanner has a next int) {

store data.nextInt() in position i of the array.
increment i.

}

CH07 p375-436 1/30/07 1:02 PM Page 422

7.5 Case Study: Hours Worked 423

This is now fairly easy to translate into actual code:

Scanner data = new Scanner(text);
int[] result = new int[7];
int i = 0;
while (data.hasNextInt()) {

result[i] = data.nextInt();
i++;

}

If we put these pieces together, we end up with the following program:

1 // First version of program that simply reads and echos.
2
3 import java.io.*;
4 import java.util.*;
5
6 public class Hours1 {
7 public static void main(String[] args)
8 throws FileNotFoundException {
9 Scanner input = new Scanner(new File("hours.txt"));
10 processFile(input);
11 }
12
13 public static void processFile(Scanner input) {
14 while (input.hasNextLine()) {
15 String text = input.nextLine();
16 int[] next = transferFrom(text);
17 System.out.println(Arrays.toString(next));
18 }
19 }
20
21 public static int[] transferFrom(String text) {
22 Scanner data = new Scanner(text);
23 int[] result = new int[7];
24 int i = 0;
25 while (data.hasNextInt()) {
26 result[i] = data.nextInt();
27 i++;
28 }
29 return result;
30 }
31 }

The program produces the following output:

[8, 8, 8, 8, 8, 0, 0]
[8, 4, 8, 4, 8, 4, 4]
[8, 4, 8, 4, 8, 0, 0]
[3, 0, 0, 8, 6, 4, 4]
[8, 8, 0, 0, 0, 0, 0]
[0, 0, 8, 8, 0, 0, 0]
[8, 8, 4, 8, 4, 0, 0]

If you compare this output to the original input file, you’ll see that it is properly read-
ing each line of data into an array of length 7. When the input line has fewer than seven
numbers the array is padded with 0s, which is exactly the behavior that we want.

CH07 p375-436 1/30/07 1:02 PM Page 423

424 Chapter 7 Arrays

Notice that none of this output will be included in the final version of the program.
Programmers often include output like this that helps to debug a program while it is
being developed.

Version 2: Cumulative Sum

The primary change we want to make in this version of the program is to introduce
the second array that keeps track of the column sums. That means we’re going to
extend the code for processFile, which currently looks like this:

while (input.hasNextLine()) {
String text = input.nextLine();
int[] next = transferFrom(text);
System.out.println(Arrays.toString(next));

}

We need to construct the total array before the loop, and we want to print it
after the loop. Inside the loop, we want to add the next line of data into the overall
total. To keep this method short, we can introduce another method that will per-
form the addition:

int[] total = new int[7];
while (input.hasNextLine()) {

String text = input.nextLine();
int[] next = transferFrom(text);
addTo(total, next);

}
System.out.println(Arrays.toString(total));

This version drops the println inside the loop because we have already verified
that the individual rows of data are being read properly into an array.

At this point it is worth noting that we have already used the number 7 twice in the
program to construct the two arrays. It is essential that the two arrays be of the same
length, so it makes sense to define a class constant that we can use instead:

public static final int DAYS = 7; // # of days in a week

We can also use this constant for our various for loops instead of the usual
array length.

To complete the second version, we have to write the addTo method. We will be
given two arrays, one with the total hours and one with the next week’s hours. Let’s
consider where we’ll be in the middle of processing the sample input file. The first
three lines of input are as follows:

8 8 8 8 8
8 4 8 4 8 4 4
8 4 8 4 8

Suppose we have properly processed the first two lines and have just read in the
third line for processing. Our two arrays will look like this:

CH07 p375-436 1/30/07 1:02 PM Page 424

7.5 Case Study: Hours Worked 425

total 316

[0]

312

[1]

316

[2]

312

[3]

316

[4]

34

[5]

34

[6]

next 38

[0]

34

[1]

38

[2]

34

[3]

38

[4]

30

[5]

30

[6]

It would be nice if we could just say:

total += next; // does not compile

Unfortunately, we can’t use operations like + and += on arrays. However, those
operations can be performed on simple integers, and these arrays are composed of sim-
ple integers. So, we basically just have to tell the computer to do seven different +=
operations on the individual array elements. This can be easily written with a for loop:

public static void addTo(int[] total, int[] next) {
for (int i = 0; i < DAYS; i++) {

total[i] += next[i];
}

}

So, our second version ends up looking like this:

1 // Second version of program that computes column sums.
2
3 import java.io.*;
4 import java.util.*;
5
6 public class Hours2 {
7 public static final int DAYS = 7; // # of days in a week
8
9 public static void main(String[] args)
10 throws FileNotFoundException {
11 Scanner input = new Scanner(new File("hours.txt"));
12 processFile(input);
13 }
14
15 public static void processFile(Scanner input) {
16 int[] total = new int[DAYS];
17 while (input.hasNextLine()) {
18 String text = input.nextLine();
19 int[] next = transferFrom(text);
20 addTo(total, next);
21 }
22 System.out.println(Arrays.toString(total));
23 }
24
25 public static int[] transferFrom(String text) {
26 Scanner data = new Scanner(text);
27 int[] result = new int[DAYS];
28 int i = 0;
29 while (data.hasNextInt()) {
30 result[i] = data.nextInt();

CH07 p375-436 1/30/07 1:02 PM Page 425

426 Chapter 7 Arrays

31 i++;
32 }
33 return result;
34 }
35
36 public static void addTo(int[] total, int[] next) {
37 for (int i = 0; i < DAYS; i++) {
38 total[i] += next[i];
39 }
40 }
41 }

This version produces the following single line of output:

[43, 32, 36, 40, 34, 8, 8]

You can use a calculator to verify that these are the correct column totals, which
means that we are ready to move on to version 3.

Version 3: Row Sum and Column Print

The core of the program has already been written. It properly reads each line of the
input file into an array, and it uses a second array to keep track of the sums of the dif-
ferent columns. In this final version we are simply finishing some of the minor
details of the output.

We want to make two changes to our existing code: We want to report the sum for
each row and we want to print the column sums in a format that is easier to read.
Each of these changes will require changing the central processFile method. To
keep processFile short, we can write a method for each of these changes.

The body of the processFile method currently looks like this:

int[] total = new int[DAYS];
while (input.hasNextLine()) {

String text = input.nextLine();
int[] next = transferFrom(text);
addTo(total, next);

}
System.out.println(Arrays.toString(total));

We need to add a call on a new method to report the sum of the row inside the
loop, and we need to replace the simple println after the loop with a call on a
method that will print the total in a more meaningful way:

int[] total = new int[DAYS];
while (input.hasNextLine()) {

String text = input.nextLine();
int[] next = transferFrom(text);
System.out.println("Total hours = " + sum(next));
addTo(total, next);

}
System.out.println();
print(total);

CH07 p375-436 1/30/07 1:02 PM Page 426

7.5 Case Study: Hours Worked 427

Now we just have to write the sum and print methods. For the sum method, we
want to add up the numbers stored in the array. This is a classic cumulative sum prob-
lem, and we can use a for-each loop to accomplish the task:

public static int sum(int[] numbers) {
int sum = 0;
for (int n : numbers) {

sum += n;
}
return sum;

}

The print method should print the column totals (the totals for each day of the
week). We could accomplish this with a for-each loop, as in:

for (int n : total) {
System.out.println(n);

}

But we don’t want to simply write out seven lines of output each with a number on
it. It would be nice to give some information about what the numbers mean. We know
that total[0] represents the total hours worked on various Mondays, total[1] rep-
resents the total hours worked on Tuesdays, and so on, but somebody reading the out-
put might not know that. So, it would be helpful to label the output with some infor-
mation about which day goes with each total. We can do this by defining our own
array of String literals:

String[] dayNames = {"Mon", "Tue", "Wed", "Thu",
"Fri", "Sat", "Sun"};

Given that we want to manipulate two arrays at once, we need to switch from a
for-each loop to a for loop with an index:

for (int i = 0; i < DAYS; i++) {
System.out.println(dayNames[i] + " hours = " + total[i]);

}

We can also call the sum method to write out the overall total hours worked after
the for loop, which results in the following complete method:

public static void print(int[] total) {
String[] dayNames = {"Mon", "Tue", "Wed", "Thu",

"Fri", "Sat", "Sun"};
for (int i = 0; i < DAYS; i++) {

System.out.println(dayNames[i] + " hours = "
+ total[i]);

}
System.out.println("Total hours = " + sum(total));

}

Putting all the pieces together, we end up with the following complete program:

CH07 p375-436 1/30/07 1:02 PM Page 427

428 Chapter 7 Arrays

1 // This program reads an input file with information about
2 // hours worked and produces a list of total hours worked each
3 // week and total hours worked for each day of the week.
4
5 import java.io.*;
6 import java.util.*;
7
8 public class Hours3 {
9 public static final int DAYS = 7; // # of days in a week
10
11 public static void main(String[] args)
12 throws FileNotFoundException {
13 Scanner input = new Scanner(new File("hours.txt"));
14 processFile(input);
15 }
16
17 // contains the overall file-processing loop
18 public static void processFile(Scanner input) {
19 int[] total = new int[DAYS];
20 while (input.hasNextLine()) {
21 String text = input.nextLine();
22 int[] next = transferFrom(text);
23 System.out.println("Total hours = " + sum(next));
24 addTo(total, next);
25 }
26 System.out.println();
27 print(total);
28 }
29
30 // constructs an array of integers and transfers
31 // data from the given String into the array in order
32 // pre: text has at most DAYS integers
33 public static int[] transferFrom(String text) {
34 Scanner data = new Scanner(text);
35 int[] result = new int[DAYS];
36 int i = 0;
37 while (data.hasNextInt()) {
38 result[i] = data.nextInt();
39 i++;
40 }
41 return result;
42 }
43
44 // returns the sum of the integers in the given array
45 public static int sum(int[] numbers) {
46 int sum = 0;
47 for (int n : numbers) {
48 sum += n;
49 }
50 return sum;
51 }
52
53 // adds the values in next to their corresponding
54 // entries in total
55 public static void addTo(int[] total, int[] next) {
56 for (int i = 0; i < DAYS; i++) {
57 total[i] += next[i];
58 }

CH07 p375-436 1/30/07 1:02 PM Page 428

Chapter Summary 429

59 }
60
61 // prints information about the totals including total
62 // hours for each day of the week and total hours overall
63 public static void print(int[] total) {
64 String[] dayNames = {"Mon", "Tue", "Wed", "Thu",
65 "Fri", "Sat", "Sun"};
66 for (int i = 0; i < DAYS; i++) {
67 System.out.println(dayNames[i] + " hours = "
68 + total[i]);
69 }
70 System.out.println("Total hours = " + sum(total));
71 }
72 }

It produces the following output:

Total hours = 40
Total hours = 40
Total hours = 32
Total hours = 25
Total hours = 16
Total hours = 16
Total hours = 32

Mon hours = 43
Tue hours = 32
Wed hours = 36
Thu hours = 40
Fri hours = 34
Sat hours = 8
Sun hours = 8
Total hours = 201

Chapter Summary

An array is an object that groups multiple primitive values

or objects of the same type under one name. Each individ-

ual value, called an element, is accessed using an integer

index from 0 to one less than the array’s length.

Attempting to access an array element with an index

of less than 0 or greater than or equal to the array’s

length will cause the program to crash with an

ArrayIndexOutOfBoundsException.

Arrays are often traversed using for loops. The length

of an array is found by accessing its length field, so

the loop over an array can process indexes from

0 to length - 1. Array elements can also be

accessed in order using a type of loop called a for-

each loop.

Arrays have several limitations, such as fixed size and lack

of support for common operations like == and println.

To perform these operations, you must often write for
loops that process each element of the array.

Several common array algorithms, such as printing an

array or comparing two arrays to each other for equality,

are implemented by traversing the elements and examin-

ing or modifying each one.

CH07 p375-436 1/30/07 1:02 PM Page 429

430 Chapter 7 Arrays

data 327

[0]

351

[1]

333

[2]

3-1

[3]

3101

[4]

Arrays of objects are actually arrays of references to

objects. A newly declared and initialized array of objects

actually stores null in all of its element indexes, so each

element must be initialized individually or in a loop to

store an actual object.

A multidimensional array is an array of arrays. These are

often used to store two-dimensional data, such as data in

rows and columns or x/y data in a 2D space.

Self-Check Problems

Section 7.1: Array Basics

1. What expression should be used to access the first element of an array of integers called numbers? What expression

should be used to access the last element of numbers, assuming it contains 10 elements? What expression can be

used to access its last element, regardless of its length?

2. Write code that creates an array of integers named data of size 5 with the following contents:

3. Write code that stores all odd numbers between �6 and 38 into an array using a loop. Make the array’s size exactly

large enough to store the numbers.

Try generalizing your code so that it will work for any minimum and maximum values, not just �6 and 38.

4. What elements does the array numbers contain after the following code is executed?

int[] numbers = new int[8];
numbers[1] = 4;
numbers[4] = 99;
numbers[7] = 2;

int x = numbers[1];
numbers[x] = 44;
numbers[numbers[7]] = 11; // uses numbers[7] as index

5. What is wrong with the following code?

int[] first = new int[2];
first[0] = 3;
first[1] = 7;
int[] second = new int[2];
second[0] = 3;
second[1] = 7;

// print the array elements
System.out.println(first);
System.out.println(second);

// see if the elements are the same
if (first == second) {

System.out.println("They contain the same elements.");
} else {

System.out.println("The elements are different.");
}

CH07 p375-436 1/30/07 1:02 PM Page 430

Self-Check Problems 431

6. Write a piece of code that declares an array called data with the elements 7, -1, 13, 24, and 6. Use only one state-

ment to initialize the array.

7. Describe how to modify the Tally program from this section to support scores of between 100,000,000 and

100,000,004 rather than between 0 and 4. (Hint: Your array should not be one hundred million elements in length!)

8. Write a piece of code that examines an array of integers and reports the maximum value in the array. Consider put-

ting your code into a method called max that accepts the array as a parameter and returns the maximum value.

Assume that the array contains at least one element.

9. Write code that computes the average (arithmetic mean) of all elements in an array of integers as a double. For

example, if the array passed contains the values {1, �2, 4, �4, 9, �6, 16, �8, 25, �10}, the calculated average

should be 2.5. You may wish to put this code into a method called average that accepts an array of integers as its

parameter and returns the average.

Section 7.2: Array-Traversal Algorithms

10. What is an array traversal? Give an example of a problem that can be solved by traversing an array.

11. Write code that uses a for loop to print each element of an array named data that contains five integers, as follows:

element [0] is 14
element [1] is 5
element [2] is 27
element [3] is �3
element [4] is 2598

Consider generalizing your code so that it will work on an array of any size.

12. Write a piece of code that prints an array of integers in reverse order, in the same format as the print method written in

this section. Consider putting your code into a method called printBackwards that accepts the array as a parameter.

13. Describe the modifications that would be necessary to change the count and equals methods you developed in this

section to process arrays of Strings instead of arrays of integers.

14. Write a method called allLess that accepts two arrays of integers and returns true if each element in the first array

is less than the element at the same index in the second array. Your method should return false if the arrays are not

the same length.

15. Why does a method to swap two array elements work correctly when a method to swap two integer values does not?

16. Write a method called swapPairs that accepts an array of integers and swaps the elements at adjacent indexes. That

is, elements 0 and 1 are swapped, elements 2 and 3 are swapped, and so on. If the array has an odd length, the final

element should be left unmodified. For example, the list {10, 20, 30, 40, 50} should become {20, 10, 40, 30, 50}

after a call to your method.

Section 7.3: Advanced Array Techniques

17. What are the values of the elements in the array numbers after the following code is executed?

int[] numbers = {10, 20, 30, 40, 50, 60, 70, 80, 90, 100};
for (int i = 0; i < 9; i++) {

numbers[i] = numbers[i + 1];
}

CH07 p375-436 1/30/07 1:02 PM Page 431

432 Chapter 7 Arrays

18. What are the values of the elements in the array numbers after the following code is executed?

int[] numbers = {10, 20, 30, 40, 50, 60, 70, 80, 90, 100};
for (int i = 1; i < 10; i++) {

numbers[i] = numbers[i � 1];
}

19. Consider the following method, mystery:

public static void mystery(int[] a, int[] b) {
for (int i = 0; i < a.length; i++) {

a[i] += b[b.length � 1 � i];
}

}

What are the values of the elements in array a1 after the following code executes?

int[] a1 = {1, 3, 5, 7, 9};
int[] a2 = {1, 4, 9, 16, 25};
mystery(a1, a2);

20. Consider the following method, mystery2:

public static void mystery2(int[] a, int[] b) {
for (int i = 0; i < a.length; i++) {

a[i] = a[2 * i % a.length] � b[3 * i % b.length];
}

}

What are the values of the elements in array a1 after the following code executes?

int[] a1 = {2, 4, 6, 8, 10, 12, 14, 16};
int[] a2 = {1, 1, 2, 3, 5, 8, 13, 21};
mystery2(a1, a2);

21. Consider the following method, mystery3:

public static void mystery3(int[] data, int x, int y) {
data[data[x]] = data[y];
data[y] = x;

}

What are the values of the elements in the array numbers after the following code executes?

int[] numbers = {3, 7, 1, 0, 25, 4, 18, �1, 5};
mystery3(numbers, 3, 1);
mystery3(numbers, 5, 6);
mystery3(numbers, 8, 4);

22. Write a piece of code that computes the average String length of the elements of an array of Strings. For exam-

ple, if the array contains {"belt", "hat", "jelly", "bubble gum"}, the average length is 5.5.

CH07 p375-436 1/30/07 1:02 PM Page 432

Exercises 433

23. Write code that accepts an array of Strings as its argument and indicates whether that array is a palindrome—that

is, reads the same forwards as backwards. For example, the array {"alpha", "beta", "gamma", "delta",

"gamma", "beta", "alpha"} is a palindrome.

Section 7.4: Multidimensional Arrays (Optional)

24. Assume that a two-dimensional rectangular array of integers called data has been declared with four rows and seven

columns. Write a loop to initialize the third row of data to store the numbers 1 through 7.

25. Write a piece of code that constructs a two-dimensional array of integers with 5 rows and 10 columns. Fill the

array with a multiplication table, so that array element [i][j] contains the value i * j. Use nested for loops to

build the array.

26. Assume that a two-dimensional rectangular array of integers called matrix has been declared with six rows and

eight columns. Write a loop to copy the contents of the second column into the fifth column.

27. Write a piece of code that constructs a jagged two-dimensional array of integers with five rows and an increasing

number of columns in each row, such that the first row has one column, the second row has two, the third has three,

and so on. The array elements should have increasing values in top-to-bottom, left-to-right order (also called row-

major order). In other words, the array’s contents should be:

1
2, 3
4, 5, 6
7, 8, 9, 10
11, 12, 13, 14, 15

Use nested for loops to build the array.

Exercises

1. Write a method called lastIndexOf that accepts an array of integers and an integer value as

its parameters and returns the last index at which the value occurs in the array. The method should return �1 if the

value is not found. For example, in the array {74, 85, 102, 99, 101, 85, 56}, the last index of the value 85 is 5.

2. Write a method called countInRange that accepts an array of integers, a minimum value, and a maximum value as

parameters and returns the count of how many elements from the array fall between the minimum and maximum

(inclusive). For example, in the array {14, 1, 22, 17, 36, 7, �43, 5}, there are four elements whose values fall

between 4 and 17.

3. Write a method called copyAll that accepts two arrays of integers as its arguments and copies the element values

from the first array into the second array. For example, consider the following code:

int[] array1 = {2, 1, 4, 3, 6, 5};
int[] array2 = new int[6];
copyAll(array1, array2);

After your copyAll method executes, the array array2 should have the contents {2, 1, 4, 3, 6, 5}, just like array1.

You may assume that the second array always contains at least as many elements as the first array.

Also try writing a variation of this method that accepts only one array as a parameter and returns the copied array.

Inside the method, create a second array of numbers to hold the copy and return it.

CH07 p375-436 1/30/07 1:02 PM Page 433

434 Chapter 7 Arrays

4. Write a method called copyRange that takes as parameters two arrays a1 and a2, two starting indexes i1 and i2,

and a length l, and copies the first l elements of a1 starting at index i1 into array a2 starting at index i2. Assume

that the arguments’ values are valid, that the arrays are large enough to hold the data, and so on.

5. Write a method called mode that returns the most frequently occurring element of an array of integers. Assume that

the array has at least one element and that every element in the array has a value between 0 and 100 inclusive. Break

ties by choosing the lower value. For example, if the array passed contains the values {27, 15, 15, 11, 27}, your

method should return 15. (Hint: You may wish to look at the Tally program from earlier in this chapter to get an

idea of how to solve this problem.)

Can you write a version of this method that does not rely on the values being between 0 and 100?

6. Write a method called stdev that returns the standard deviation of an array of integers. Standard deviation is com-

puted by taking the square root of the sum of the squares of the differences between each element and the mean,

divided by one less than the number of elements. (It’s just that simple!) More concisely and mathematically, the stan-

dard deviation of an array a is written as follows:

For example, if the array passed contains the values {1, �2, 4, �4, 9, �6, 16, �8, 25, �10}, your method should

return approximately 11.237.

7. Write a method called kthLargest that accepts an integer k and an array a as its parameters and returns the element

such that k elements have greater or equal value. If k = 0, return the largest element; if k = 1, return the second-

largest element, and so on. For example, if the array passed contains the values {74, 85, 102, 99, 101, 56, 84} and the

integer k passed is 2, your method should return 99 because there are two values at least as large as 99 (101 and

102). Assume that 0 ≤ k < a.length. (Hint: Consider sorting the array, or a copy of the array first.)

8. Write a method called median that accepts an array of integers as its argument and returns the median of the num-

bers in the array. The median is the number that will appear in the middle if you arrange the elements in order.

Assume that the array is of odd size (so that one sole element constitutes the median) and that the numbers in the

array are between 0 and 99 inclusive. For example, the median of {5, 2, 4, 17, 55, 4, 3, 26, 18, 2, 17} is 5 and the

median of {42, 37, 1, 97, 1, 2, 7, 42, 3, 25, 89, 15, 10, 29, 27} is 25. (Hint: You may wish to look at the Tally pro-

gram from earlier in this chapter for ideas.)

9. Rewrite the median method from the previous exercise so that it works regardless of the elements’ values and works

for arrays of even size. (The median of an array of even size is the average of the middle two elements.)

10. Use your median method from the previous exercises to write a program that reads a file full of integers and prints

the median of those integers.

11. Write a method called wordLengths that accepts a String representing a file name as its argument. Your method

should open the given file, count the number of letters in each token in the file, and output a result diagram of how

many words contain each number of letters. For example, if the file contains the following text:

Before sorting:
13 23 480 �18 75
hello how are you feeling today

After sorting:
�18 13 23 75 480
are feeling hello how today you

stdev1a2 �R a
a.length�1

i�0
1a 3 i 4 � average1a2 22

a.length � 1

CH07 p375-436 1/30/07 1:02 PM Page 434

Programming Projects 435

your method should produce the following output to the console:

1: 0
2: 6 ******
3: 10 **********
4: 0
5: 5 *****
6: 1 *
7: 2 **
8: 2 **

Assume that no token in the file is more than 80 characters in length.

12. Write a method called matrixAdd that accepts a pair of two-dimensional arrays of integers as parameters, treats the

arrays as 2D matrixes, and adds them, returning the result. The sum of two matrixes A and B is a matrix C, where for

every row i and column j, Cij = Aij + Bij. You may assume that the arrays passed as parameters have the same

dimensions.

13. Write a method called equals that accepts a pair of two-dimensional arrays of integers as

parameters and returns true if the arrays contain the same elements in the same order. If the arrays are not the same

length in either dimension, it should return false.

Programming Projects

1. Java’s type int has a limit on how large an integer it can store. This limit can be circum-

vented by representing an integer as an array of digits. Write an interactive program that adds two integers of up

to 50 digits each.

2. Write a game of Hangman using arrays. Allow the user to guess letters and represent which letters have been

guessed in an array.

3. Write a program that plays a variation of the game of Mastermind with a user. For example, the program can use

pseudorandom numbers to generate a four-digit number. The user should be allowed to make guesses until she gets

the number correct. Clues should be given to the user indicating how many digits of the guess are correct and in the

correct place, and how many are correct but in the wrong place.

4. Write a program to score users’ responses to the classic Myers-Briggs personality test. Assume that the test has 70

questions that determine a person’s personality in four dimensions. Each question has two answer choices that we’ll

call the “A” and “B” answers. Questions are organized into 10 groups of seven questions, with the following repeat-

ing pattern in each group:

• The first question in each group (questions 1, 8, 15, 22, etc.) tells whether the person is introverted or extroverted.

• The next two questions (questions 2 and 3, 9 and 10, 16 and 17, 23 and 24, etc.) test whether the person is guided

by his senses or his intuitions.

• The next two questions (questions 4 and 5, 11 and 12, 18 and 19, 25 and 26, etc.) test whether the person focuses

on thinking or feeling.

• The final two questions in each group (questions 6 and 7, 13 and 14, 20 and 21, 27 and 28, etc.) test whether the

person prefers to judge or be guided by perception.

CH07 p375-436 1/30/07 1:02 PM Page 435

436 Chapter 7 Arrays

In other words, if we consider introversion/extraversion (I/E) to be dimension 1, sensing/intuition (S/N) to be dimen-

sion 2, thinking/feeling (T/F) to be dimension 3, and judging/perception (J/P) to be dimension 4, the map of ques-

tions to their respective dimensions would look like this:

1223344122334412233441223344122334412233441223344122334412233441223344
BABAAAABAAAAAAABAAAABBAAAAAABAAAABABAABAAABABABAABAAAAAABAAAAAABAAAAAA

The following is a partial sample input file of names and responses:

Betty Boop
BABAAAABAAAAAAABAAAABBAAAAAABAAAABABAABAAABABABAABAAAAAABAAAAAABAAAAAA
Snoopy
AABBAABBBBBABABAAAAABABBAABBAAAABBBAAABAABAABABAAAABAABBBBAAABBAABABBB

If the person has less than 50% B responses for a given personality dimension, her type for that dimension should be

the first of its two choices. If the person has 50% or more B responses, her type for that dimension is the second

choice. Your program should output each person’s name, number of A and B responses for each dimension, percent-

age of Bs in each dimension, and overall personality type. The following should be your program’s output for the

preceding input data:

Betty Boop:
1A�9B 17A�3B 18A�2B 18A�2B
[90%, 15%, 10%, 10%] = ISTJ

Snoopy:
7A�3B 11A�9B 14A�6B 6A�14B
[30%, 45%, 30%, 70%] = ESTP

5. Write a game of Tic-Tac-Toe that represents the board using a 2D array.

CH07 p375-436 1/30/07 1:02 PM Page 436

