
Back to Basics in CS1 and CS2
Stuart Reges

University of Washington
Computer Science & Engineering

Seattle, WA 98195
+206.695.9138

reges@cs.washington.edu
ABSTRACT
This paper describes a significant redesign of the introductory
courses at the University of Washington that has led to increased
enrollments, increased student satisfaction and an increase in the
number of women admitted to the CS major. The new courses are
still taught in Java, but they represent a return to the basics that
were emphasized in the pre-Java era. The biggest changes have
occurred in the CS1 course where we have replaced an “objects
early” curriculum with a more traditional procedural approach
using static methods in Java. The new CS1 course emphasizes
problem solving, procedural decomposition and mastery of basic
skills (e.g., loops, conditionals and arrays). The new CS2 course
emphasizes data structures, linked lists, binary trees and
recursion.

Categories and Subject Descriptors
K3.2 [Computers and Education]: Computer and Information
Science Education – computer science education, curriculum.

General Terms
None.

Keywords
CS1, CS2, objects first, problem solving.

1. INTRODUCTION
Curriculum 2001 defines the objects first approach as a course
that “emphasizes the principles of object-oriented programming
and design from the very beginning” and that “begins
immediately with the notions of objects and inheritance” [13].

A few schools have completely reworked their CS1 course to fit
this approach. Some have done so by developing custom libraries
and toolkits, as with Williams College [3] and Northeastern
University [11]. Others have taken advantage of custom
development environments such as BlueJ developed specifically
for CS1 [8].

Textbooks also are moving more in the direction of objects early.
Cay Horstmann, for example, has moved his chapter “An
Introduction to Objects and Classes” ahead of his chapter on

“Fundamental Data Types” in his CS1 textbook [5] and Lewis and
Loftus have moved their chapter on “Writing Classes” ahead of
their chapters on control structures in their CS1 textbook [9].
This is reminiscent of the rush in the late 1980’s to move
procedures early in CS1 textbooks, documented in detail in a
paper by Rich Pattis [10].

But not all schools experimenting with objects early have had a
good experience. In late March, 2004, Elliot Koffman posted a
message to the SIGCSE mailing list in which he said, “I fear we
have reinvented the ‘new math’ syndrome and many of us are
unaware of it.” His message generated a flood of responses [2]
that inspired several of us to organize a debate at the 2005
SIGCSE symposium about whether or not the objects early
approach has failed [1].

I was thrust into the middle of this issue in the spring of 2004
when the faculty of the University of Washington hired me to take
charge of their introductory courses and to “fix the problems.” I
had given a talk entitled “My Disillusionment with Java” in which
I expressed my own concerns about the objects early approach
and they hired me anyway.

The department was facing problems that are fairly common
today in the wake of the dotcom collapse of 2001 and as a result
of our collective struggle to figure out what to teach in intro
courses and how to teach it. The major problems were:

• A decline in student satisfaction and enrollment in the
department’s introductory courses

• A decline in the number of applicants to the major,
particularly among women

• Inconsistency in teaching as different instructors tried
different approaches

• A lack of basic programming skills reported by
instructors of upper-division courses

We solved the consistency problem by designating one individual
(currently me) to take charge of the introductory courses and to
design a standard curriculum for both the CS1 and CS2 courses.

We have now taught the new version of CS1 four times and the
new version of CS2 twice. Early results indicate that we have
addressed several of the other problems as well. Enrollments and
student satisfaction are up as well as the number and percentage
of women admitted to the CS major. It’s too early to tell whether
we have addressed the “basic skills” issue because these students
haven’t yet taken upper-division courses.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGCSE'06, March 1–5, 2006, Houston, Texas, USA.
Copyright 2006 ACM 1-59593-259-3/06/0003...$5.00.

We made many changes all at once, so this does not constitute
anything like a controlled experiment. We can’t know for sure
how much influence each change has had. But the bottom line is

that we now have a stable set of introductory courses that are
working well for the department.

2. THE NEW CS1
Our new version of CS1 looks a lot like a 1980’s course taught in
Pascal. We have gone back to procedural style programming. I
was motivated to do this after attempting and failing to teach a
broad range of introductory students at the University of Arizona
using an “objects early” approach. I found that my best students
did just fine in the new approach, but the broad range of mid-level
students struggled with the object concept.

Like many instructors, I had tried several intermediate
compromises. For example, I asked students to write what
amounted to “procedural objects” where the methods of the object
are similar to the input/process/output paradigm of procedural
programming. This was unsatisfying because the resulting
objects and programs were not very “object oriented.” I also
found that this led students to become dependent on what would
be global variables in a procedural program. In other words, it
was difficult to get them to understand when to declare instance
variables and given that these were rather pathetic objects to
begin with, it seemed unfair to take off style points for relying too
heavily on “global” instance variables.

In the new version of the course we don’t have students write
their own classes until almost the end of the course. Instead, they
decompose their programs into several static methods. This is
essentially the same thing we did in Pascal, which means that we
can return to many of the traditional issues that CS1 has addressed
(decomposition, parameter passing, use of local variables,
returning values from a method).

The syntax of static methods is cumbersome and serves as a
constant reminder that Java was designed to be used in other
ways, but this doesn’t seem to bother the students. They quickly
get used to typing “public static” in front of their methods.

Many instructors question the use of Java in a course that
emphasizes procedural programming and I agree that Java is not
the ideal language for this new version of the course. For us the
payoff comes in the CS2 course where we can build on these
basic skills. The same mid-level students who struggle with the
object concept in an objects early course are likely to struggle
with a change of programming language between CS1 and CS2.
So even though Java is not an ideal choice for our CS1, we
continue to use it because of its payoff in our CS2 course.

Our new CS1 course is not devoid of objects. Even as the
students practice writing static methods, we have them use a
number of interesting objects along the way, including a custom
“drawing panel” object that allows us to have them do simple
graphics. The key is that for most of the course they use objects
without defining them. In the last two weeks of the class we
discuss how to define objects and we end with a relatively simple
program that allows them to practice defining their own classes.

2.1 Problem Solving
The first goal listed in the 1984 description of CS1 is “to
introduce a disciplined approach to problem-solving methods and
algorithm development” [7]. Numerous papers and textbooks
over the years have referred to this essential aspect of CS1, that

our course emphasizes “problem solving.” In some sense this
term is vacuous. Don’t students in all of their courses solve some
kind of problems? And yet we felt we knew what we meant when
we used that phrase.

Donald Knuth gave some insight into this notion when he wrote
that, “It has often been said that a person does not really
understand something until after teaching it to someone else.
Actually a person does not really understand something until after
teaching it to a computer, i.e., expressing it as an algorithm” [6].
I believe Knuth has captured precisely what we mean by the term
“problem solving.”

Unfortunately this kind of problem solving has been disappearing
as we have adopted the object oriented approach. We used to ask
students to write complete programs that were specified at the
program level (given these inputs, produce these outputs). That
left a lot of problem solving for the students to work out. In our
switch to objects we have more often given students highly
constrained assignments in which we specify what classes they
are to write and what methods to write within those classes. We
are doing much of the problem solving for them.

I personally recommended this approach in a SIGCSE paper in
which I said that I thought this would be good for the students
[12]. It does give students experience writing to a specification
and this is a good experience for students to have. The question is
whether the experience of writing to a specification is more
important than problem solving in the first course. I no longer
believe the tradeoff is worth it.

Many instructors adopt a middle ground where they ask students
to write methods that they know will require the students to
introduce their own private methods. This retains some of the
problem solving, but there is still a reduction in the complexity of
the problems we are asking students to solve. I have also been
surprised to find how much of a sense of satisfaction students
derive from writing a complete program on their own.

Our switch to static methods has allowed us to bring back the
problem solving aspects of the course that we thought were so
important in the 1980’s.

2.2 Basic Skills
In talking to faculty I have often heard the complaint that students
seem to lack basic programming skills that they used to have.
This is not a new complaint. It is almost a truism across
universities and across disciplines to say that the senior faculty
think that current students don’t know as much as they used to.
But there is good reason to believe that the new versions of CS1
we have been experimenting with do not give students as much
practice as they used to get with basic programming skills.

All one has to do is count the number of lectures devoted to topics
like conditionals, loops and arrays to see that we are putting less
effort into the teaching of what we used to consider to be
fundamental programming skills. Otherwise we wouldn’t be able
to have lectures on the details of writing classes, on inheritance
and polymorphism, on the Java API (graphics, collections, etc)
and on object oriented design. Assignments also focus less on
basic skills because they have to include practice with these new
programming constructs.

We have also found that when you write well-structured object-
oriented code, you don’t need the same set of skills. Event driven
programs need fewer while loops than console and file based
programs. Inheritance allows us to eliminate many of the
conditional branches we so often include in procedural programs.
And many of the array manipulations we used to have students
write are now built-in operations in the collections classes.

Our decision to delay having students write their own classes has
allowed us to return to assignments that force students to practice
the traditional programming skills needed for procedural
programming (decomposition, loops, if/else, arrays, etc).

2.3 Console and File Processing
For years Java has not provided a simple mechanism for console
or file processing, but the Scanner class included in Java 5 finally
provides a reasonable mechanism for both. Many people have
argued that we should have students writing more modern
programs with graphical user interfaces, but that introduces its
own set of complexities.

Most of the programs that students write in our new CS1 course
are console-based. This has allowed us to focus on other aspects
of programming like decomposition and algorithmic thinking.

We also felt it important to put file processing back into our CS1
course. This opens up a wealth of programming assignments that
we otherwise couldn’t give. File processing is also a practical
skill that students can use in other Java programs that they write.

2.4 Programming Assignments
Table 1 lists the programming assignments given in a recent
offering of the new CS1 course. These are weekly assignments.
The University of Washington is on the quarter system
(approximately ten weeks per quarter).

Table 1. CS1 programming assignments

Description Main Topics
1 display a song println, static methods

2 display a figure (rocket ship) for loops, nested loops,
integer expressions

3 display a complex graphical image value parameters,
graphics

4 prompt for data to choose between
two candidates for admission

interactive programs,
if/else, return values

5 play a guessing game while loops

6 display a graph of the popularity of
a baby name

file processing, writing
a mid-size program

7 analyze a file of responses to a
personality test file processing, arrays

8 define several “critter” classes as
part of a simulation defining classes

3. THE NEW CS2
The changes to CS2 have been less drastic because the course had
not strayed too far from the traditional focus on data structures.
But the switch to Java led the department to include additional
topics like object-oriented modeling and graphical user interfaces.
Over time these topics grew to such an extent that they were

pushing out traditional topics like recursion, linked lists and
binary trees.

In the redesign we gave up some of the OO material and all of the
GUI material so that we could return to the traditional topics of
linked lists, binary trees and recursion.

But we haven’t abandoned OO issues. In the redesigned course
we use the Java collections classes as a grand case study of how
to use OO techniques like interfaces and abstract classes to
efficiently implement a library of useful data structures.

3.1 Programming Assignments
Table 2 lists the programming assignments given in a recent
offering of the new CS2 course. These are weekly programming
assignments.

Table 2. CS2 programming assignments

Description Main Topics
1 implement a sorted int list arrays, defining classes

2 implement a “letter inventory”
class arrays, defining classes

3 manage information about a
game of “assassin” linked lists

4 implement the Sieve of
Eratosthenes using a Queue ADT’s, using a queue

5 generate random sentences
given a BNF grammar

recursion, use of Map,
ArrayList, String.split

6 generate all anagrams of a
phrase recursive backtracking

7 use a binary tree to play
“twenty questions” binary trees

8 Huffman coding binary trees, PriorityQueue

4. INDICATIONS OF SUCCESS
There are several indications that the new versions of the
introductory courses are succeeding. Student evaluations have
never been higher for the CS1 course. To get some historical
perspective, we divided the recent student evaluation data into
three groups. We have approximately five years of data from a C
version of the course that was taught until 2001. We have
approximately three years of data for the various Java versions of
the course that were taught before the most recent change. And
we have one year of data for the new Java version of CS1.

Table 3 shows mean course evaluation scores for these three
versions of the course on the four questions that are meant to get
an overall evaluation of the course and the instructor. These
questions each had six possible answers and were converted into a
numerical score that ranges from 0.0 to 5.0. Higher is better (0
corresponding to “very poor” and 5 corresponding to “excellent”).

As the table indicates, average scores went down when the
department first switched from C to Java, but the new version of
the course is receiving higher student evaluations than either the
old C version or the initial Java version.

Table 3. Overall course evaluation data

Question C
Mean

Old
Java

New
Java

Mean Mean
The course as a whole was: 3.71 3.30 4.06

The course content was: 3.71 3.40 4.01
The instructor’s contribution to the

course was: 3.82 3.42 4.43

The instructor’s effectiveness in
teaching the subject matter was: 3.70 3.20 4.35

We have only one quarter of data for the new version of the CS2
course, so it is difficult to draw definitive conclusions. But it is
worth noting that the course received the highest score ever for
the first question (“the course as a whole was”).

Enrollment has also turned around. We had seen a decline since
the dotcom collapse in 2001. But with the new version of CS1,
enrollment has stabilized and seems to be creeping back up.
Figure 1 shows the annual enrollment in CS1 starting with the
1998/1999 academic year. Enrollments were 1500+ in the pre-
dotcom years, but we had a fairly steady decline afterwards down
to the low of just 1200 in the 2003/2004 academic year. Our
department has not had the dramatic drop-off in enrollment that
many schools have seen because it is required of many
engineering majors and, therefore, has a base constituency. The
last entry is for the new version of the course where we see a
reversal of the downward trend (an increase of 120 students).

Figure 1. CS1 enrollment by academic year

0

200

400

600

800

1000

1200

1400

1600

1800

98/99 99/00 00/01 01/02 02/03 03/04 04/05

We saw a more dramatic change in enrollment in our CS2 course
after the dotcom collapse, as indicated in Figure 2. The high
point occurred in 2000/2001 with a rapid decline in the
subsequent two years. The enrollment has been fairly stable since
then. The switch to the new version of CS1 does not seem to
have changed the enrollment. The new version of CS2 has not
been offered enough times to discern its impact.

Figure 2. CS2 enrollment by academic year

0

100

200

300

400

500

600

700

800

900

1000

98/99 99/00 00/01 01/02 02/03 03/04 04/05

We have been particularly concerned about the percentage of
women in our introductory courses and our major. Figure 3
shows the percentage of women in CS1 since 2000/2001. The
graph shows a disturbing drop of nearly five percentage points
from the peak in 2000/2001 to the low point in 2002/2003. The
final entry is for the new version of CS1 and it indicates a
significant increase in the percentage of women year over year
(from 22.7% to 25.5%), although this is still not as high as the
percentage in 2000/2001.

Figure 3. CS1 female enrollment by academic year

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

00/01 01/02 02/03 03/04 04/05

Figure 4 shows the corresponding data for the CS2 course. The
percentage of women in CS2 has stayed fairly constant over time.
We had a slight decline in 2003/2004 and a rebound in
2004/2005. We believe that this is due to unusual circumstances
that might have artificially deflated the first number and
artificially inflated the second. In any event, it is clear that the
new versions of CS1 and CS2 are doing at least as well as the old
versions in attracting women to the CS2 course.

Figure 4. CS2 female enrollment by academic year

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

00/01 01/02 02/03 03/04 04/05

We won’t know for a few years how the new versions of our
introductory courses will affect admissions to the CS major, but
we have some early indications that they are helping us to attract
more women to the major. In the most recent round of
admissions our pool consisted of students who had almost all
taken the new version of CS1 and approximately half had taken
the new version of CS2. We admitted 24 women out of 98
students (24.5%). This is the highest absolute number of women
admitted to the program in one group and also the highest
percentage of women admitted to the major. This is a very
encouraging result, although we won’t know for a while whether
this represents an anomaly.

Figure 5 shows the trend in female admissions for the past 6
years. The admission rate for 2004/2005 is the highest we have

6. REFERENCES seen, although not quite as high as the 24.5% we saw in the most
recent pool because it includes an earlier admissions group and a
group of students who were admitted directly from high school.

[1] Astrachan, A., Bruce, K., Koffman, E., Kölling, M. and
Reges, S. Resolved: Objects Early has Failed. Proceedings
of the thirty-sixth SIGCSE technical symposium on
Computer Science, 2005.

Figure 5. Percent women admitted to CS by academic year

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

99/00 00/01 01/02 02/03 03/04 04/05

[2] Bruce, K. Controversy on How to Teach CS1: A discussion
on the SIGCSE-members mailing list. ACM SIGCSE
Bulletin, Volume 37, Issue 2, June 2005.

[3] Bruce, K., Danyluk, A. and Murtagh, T. Event-driven
programming is simple enough for CS1. Proceedings of the
6th annual conference on Innovation and technology in
Computer Science Educations, 2001.

[4] Eney, C. and Hoyer, C. Making a Difference on $10 a Day:
Creating a “Women in CSE” Seminar Linked to CS1.
Proceedings of the American Society for Engineering
Education, 2005.

It is important to note that the improvements in female enrollment
are a result of several efforts undertaken by the department to
increase female participation. In particular, we have a seminar
aimed at women in the intro courses that we believe is having a
positive impact (described separately in [4]). We believe that the
new versions of CS1 and CS2 are helping as well, but they are
just part of the overall effort.

[5] Horstmann, C. Computing Concepts with Java Essentials
(third edition). John Wiley, 2003.

[6] Knuth, D. Selected Papers on Computer Science. CSLI,
1996.

[7] Koffman, E., Miller, P. and Wardle, C. Recommended
curriculum for CS1, 1984. Communications of the ACM,
October, 1984.

5. CONCLUSIONS [8] Kölling, M. and Rosenberg, J. Objects first with Java and
BlueJ. Proceedings of the thirty-first SIGCSE technical
symposium on Computer Science Education, 2000.

We have made many changes all at once, so it is difficult to
determine which changes have produced which results. As the
car companies are so fond of saying, “your mileage may vary.” [9] Lewis, J. and Loftus, W. Java Software Solutions (fourth

edition). Addison Wesley, 2005. What we can say definitively is that the changes we have made
are working for us. So if anyone doubted whether a procedural
emphasis in a Java CS1 course can work, they need doubt no
more. We can serve as the existence proof that old-fashioned
doesn’t have to mean unpopular. We are teaching our courses to
a broad range of engineering students who are more satisfied than
they have ever been before with our course. At the same time, we
are managing to retain a healthy percentage of women and to
encourage many to pursue our major.

[10] Pattis, R. The “procedures early” approach in CS 1: a
heresy. Proceedings of the twenty-fourth SIGCSE technical
symposium on Computer science education, 1993.

[11] Rasala, R., Raab, J. and Proulx, V. Java power tools: model
software for teaching object-oriented design. Proceedings of
the thirty-second SIGCSE technical symposium on
Computer Science Education, 2001.

[12] Reges, S. Conservatively radical Java in CS1. Proceedings
of the thirty-first SIGCSE technical symposium on Computer
science education, 2000.

One specific worth noting is that we have accomplished this
without the use of pair programming. In fact, we had been
experimenting with pair programming in the previous version of
the course. Our “back to basics” course requires students to write
programs individually. Again, we don’t know whether the switch
to individual programming has made things better or worse or
whether it’s had no effect at all, but we can serve as an example
of a school that is succeeding without pair programming.

[13] Roberts, E. and Engel, G. (editors). Computing Curriculua
2001: Final Report of the Joint ACM/IEEE-CS Task Force
on Computer Science Education. Los Alamitos, CA: IEEE
Computer Society Press, December 2001.
http://www.sigcse.org/cc2001/cs-introductory-courses.html.

	INTRODUCTION
	THE NEW CS1
	Problem Solving
	Basic Skills
	Console and File Processing
	Programming Assignments

	THE NEW CS2
	Programming Assignments

	INDICATIONS OF SUCCESS
	CONCLUSIONS
	REFERENCES

